
Pyinterpolate
Release 0.5.1

Szymon Moliński

Feb 19, 2024

CONTENTS

1 version 0.5.1 - Mykolaiv 1

2 Contents 3

3 How to cite 233

i

ii

CHAPTER

ONE

VERSION 0.5.1 - MYKOLAIV

Note: The last documentation update: 2024-02-19

Pyinterpolate is the Python library for geostatistics. The package provides access to spatial statistics tools used in
various studies. This package helps you interpolate spatial data with the Kriging technique.

If you’re:

• GIS expert,

• geologist,

• mining engineer,

• ecologist,

• public health specialist,

• data scientist.

Then this package may be useful for you. You could use it for:

• spatial interpolation and spatial prediction,

• alone or with machine learning libraries,

• for point observations and aggregated data.

Pyinterpolate allows you to perform:

1. Ordinary Kriging and Simple Kriging (spatial interpolation from points),

2. Centroid-based Poisson Kriging of polygons (spatial interpolation from blocks and areas),

1

Pyinterpolate, Release 0.5.1

3. Area-to-area and Area-to-point Poisson Kriging of Polygons (spatial interpolation and data deconvolution from
areas to points).

4. Inverse Distance Weighting.

5. Semivariogram regularization and deconvolution.

6. Semivariogram modeling and analysis.

With pyinterpolate we can retrieve the point support model from blocks. The example is COVID-19 population at
risk mapping. Countries worldwide aggregate disease data to protect the privacy of infected people. But this kind of
representation introduces bias to the decision-making process. To overcome this bias, you may use Poisson Kriging.
Block aggregates of COVID-19 infection rate are transformed into the point support created from population density
blocks. We get the population at risk map:

2 Chapter 1. version 0.5.1 - Mykolaiv

CHAPTER

TWO

CONTENTS

2.1 Setup

2.1.1 Installation guidelines

The package can be installed from conda and pip. Conda installation requires Python >= 3.8, pip installation requires
Python >= 3.7.

Conda

conda install -c conda-forge pyinterpolate

pip

pip install pyinterpolate

2.1.2 Installation - additional topics

Working with Notebooks

Install pyinterpolate along notebook in your conda environment:

Step 1:

conda create -n [NAME OF YOUR ENV]

Step 2:

conda activate [NAME OF YOUR ENV]

Step 3:

conda install -c conda-forge notebook pyinterpolate

Now you are able to run library from a notebook.

3

Pyinterpolate, Release 0.5.1

The libspatialindex_c.so dependency error

With Python==3.7 installation rtree and GeoPandas that are requirements for pyinterpolate may be not installed prop-
erly because your operating system does not have libspatialindex_c.so file. In this case install it from terminal:

Linux:

sudo apt install libspatialindex-dev

MacOS:

brew install spatialindex

2.2 Quickstart

2.2.1 Installation

Install package with conda:

conda install -c conda-forge pyinterpolate

2.2.2 Ordinary Kriging

The package has multiple spatial interpolation functions. The flow of analysis is usually the same for each method.
The interpolation of missing value from points is the basic case. We use for it Ordinary Kriging.

[1.] Read and prepare data.

from pyinterpolate import read_txt

point_data = read_txt('dem.txt')

[2.] Analyze data, calculate the experimental variogram.

from pyinterpolate import build_experimental_variogram

search_radius = 500
max_range = 40000

experimental_semivariogram = build_experimental_variogram(input_array=point_data,
step_size=search_radius,
max_range=max_range)

[3.] Data transformation, fit theoretical variogram.

from pyinterpolate import build_theoretical_variogram

semivar = build_theoretical_variogram(experimental_variogram=experimental_semivariogram,
(continues on next page)

4 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

model_type='spherical',
sill=400,
rang=20000,
nugget=0)

[4.] Interpolation.

from pyinterpolate import kriging

unknown_point = (20000, 65000)
prediction = kriging(observations=point_data,

theoretical_model=semivar,
points=[unknown_point],
how='ok',
no_neighbors=32)

[5.] Error and uncertainty analysis.

print(prediction) # [predicted, variance error, lon, lat]

>> [211.23, 0.89, 20000, 60000]

[6.] Full code.

from pyinterpolate import read_txt
from pyinterpolate import build_experimental_variogram
from pyinterpolate import build_theoretical_variogram
from pyinterpolate import kriging

point_data = read_txt('dem.txt') # x, y, value
search_radius = 500
max_range = 40000

experimental_semivariogram = build_experimental_variogram(input_array=point_data,
step_size=search_radius,
max_range=max_range)

semivar = build_theoretical_variogram(experimental_variogram=experimental_semivariogram,
model_type='spherical',
sill=400,
rang=20000,
nugget=0)

unknown_point = (20000, 65000)
prediction = kriging(observations=point_data,

theoretical_model=semivar,
points=[unknown_point],
how='ok',
no_neighbors=32)

2.2. Quickstart 5

Pyinterpolate, Release 0.5.1

2.3 Tutorials

Step-by-step tutorials, for beginners and advanced users.

2.3.1 Beginner

A.1.1 Semivariogram Estimation

Table of Contents:

1. Read point data

2. Create the experimental variogram

3. Set manually different semivariogram models

4. Set a semivariogram model automatically

5. Export model

6. Import model

Introduction

In this tutorial, we will learn how to read and prepare data for semivariogram modeling, manually set semivariogram
type, and do it automatically. We will compare different semivariogram models by visualizing the outcomes of the
models.

Semivariogram modeling is an initial step before we can perform spatial interpolation of unknown values with Kriging.
When you complete this tutorial, you may learn how to:

• perform point Kriging (ordinary and simple),

• regularize semivariogram of areal data.

We use DEM data which is stored in a file samples/point_data/txt/pl_dem.txt.

Import packages and modules

[1]: import numpy as np

import matplotlib.pyplot as plt

IO - read text
from pyinterpolate import read_txt
Experimental variogram
from pyinterpolate import build_experimental_variogram
Theoretical Variogram
from pyinterpolate import TheoreticalVariogram, build_theoretical_variogram

6 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

1) Read point data

[2]: DATA = 'samples/point_data/txt/pl_dem_epsg2180.txt'
dem = read_txt(DATA)

[3]: # Look into a first few lines of data

dem[-5:, :]

[3]: array([[2.55032701e+05, 5.47047700e+05, 6.29624100e+01],
[2.54975796e+05, 5.45920408e+05, 2.03861294e+01],
[2.54751735e+05, 5.41480271e+05, 4.03093376e+01],
[2.54682103e+05, 5.40099921e+05, 2.19432678e+01],
[2.54521994e+05, 5.36925123e+05, 5.15251350e+01]])

2) Create the experimental variogram

Checking spatial correlation in our dataset is the first required step. We use variograms - plots of the dissimilarity
between point pairs (y-axis) along a rising distance (x-axis). There are two “types” of variograms.

• Experimental (semi)variogram: directly showing differences between point pairs at specific distances - lags.
It could be very messy. We use it to check if there is a spatial correlation.

• Theoretical (semi)variogram: is a particular function applied to the experimental variogram. We fit a function
from a pre-defined set to experimental semivariogram points and choose the model with the lowest error possible.
We have a few models to try and only three hyperparameters for controlling their behavior.

We start our analysis by setting up the experimental model. We use the build_experimental_variogram() func-
tion, which creates for us an ExperimentalVariogram object. We pass to this function three parameters:

1. input_array: numpy array with coordinates and observed values, for example: [[0, 0, 10], [0, 1,
20]],

2. step_size: we must divide our area of analysis into discrete lags. The lags are intervals where we check if
the point has a neighbor. For example, if we look into the lag 500, then we are going to compare one point with
other points in a distance (0, 1000] from this point,

3. max_range: this parameter represents the possible maximum range of spatial dependency. This parameter
should be at most half of the area extent.

[4]: # Create experimental semivariogram

step_radius = 500 # meters
max_range = 10000 # meters

experimental_variogram = build_experimental_variogram(input_array=dem, step_size=step_
→˓radius, max_range=max_range)

[5]: # What is a type of experimental variogram?

type(experimental_variogram)

[5]: pyinterpolate.variogram.empirical.experimental_variogram.ExperimentalVariogram

The ExperimentalVariogram object represents all information that we could estimate from our measurements:

2.3. Tutorials 7

Pyinterpolate, Release 0.5.1

• semivariance: dissimilarity over a distance,

• covariance: similarity over a distance,

• variance: non-spatial variance of all points.

The class has two useful methods:

1. We can print object statistics with the print() function,

2. or we can plot semivariance, covariance, and variance and check how they behave with the .plot() method.

Let’s check both!

[6]: print(experimental_variogram)

+--------+--------------------+---------------------+--------------------+
| lag | semivariance | covariance | var_cov_diff |
+--------+--------------------+---------------------+--------------------+
500.0	14.716058620972868	480.99904783812127	8.821278469608444
1000.0	34.85400868491261	464.2196256667607	25.600700640969023
1500.0	57.712760007769795	433.73651582698574	56.08381048074398
2000.0	82.49483539006093	403.5799288984297	86.24039740929999
2500.0	111.4449493651956	364.9336781724029	124.88664813532682
3000.0	143.4007980025356	325.6459001433955	164.1744261643342
3500.0	175.10704725708965	284.4093681493841	205.41095815834564
4000.0	209.3522343651705	245.59671700665646	244.22360930107325
4500.0	244.46785072173265	204.4305639103993	285.3897623973304
5000.0	281.0897575749926	159.61259251127132	330.2077337964584
5500.0	315.67549229122216	118.99201963546533	370.8283066722644
6000.0	349.5718260502048	81.90206675127321	407.9182595564565
6500.0	381.7274369750636	47.01829083567338	442.80203547205633
7000.0	413.81104972218697	15.768848642349267	474.05147766538045
7500.0	439.311684307325	-9.119116076399862	498.93944238412956
8000.0	461.6911951584344	-29.173423730506535	518.9937500382363
8500.0	482.51366131979273	-44.75615663700621	534.576482944736
9000.0	501.63014408854025	-58.013038178981994	547.8333644867117
9500.0	522.2111025684128	-72.92100663867586	562.7413329464056
+--------+--------------------+---------------------+--------------------+

• Lag is a column with the lag center,

• semivariance is a column with a dissimilarity metric,

• covariance is a column with a similarity metric,

• var_cov_diff is a difference between the variance and the covariance; ideally, it should equal the semivariance.
But it is possible only if a spatial process is second-order stationary. It is a rare situation in real-world applications.
Usually, this value is very close to the semivariance.

We can plot semivariance and covariance to understand their relation.

[7]: experimental_variogram.plot(plot_semivariance=True, plot_covariance=True, plot_
→˓variance=True)

8 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Our plot shows three objects:

1. Circles represent semivariance,

2. Plus signs represent covariance,

3. The dashed line is a variance.

We see here that semivariance and covariance are mirrored. What does it mean? It is normal behavior, and we should
expect it - semivariance and covariance have symmetrical trends (they differ in a sign). We can read it as:

• with semivariance, the dissimilarity between point pairs over a distance increases,

• covariance shows that the similarity between point pairs over a distance decreases.

In the best-case scenario (data is stationary, e.g., mean and variance don’t change with a distance), variance and covari-
ance should be equal to semivariance. That’s why our ExperimentalVariogram object prints the difference between
those two. We can quickly check if the process we measure is stationary.

With the experimental variogram, we can create a theoretical model of semivariance.

3. Set manually different semivariogram models

With an experimental variogram, we can start modeling theoretical function that optimally describes observed data.
Our role is to choose the modeling function and to set three hyperparameters: nugget, sill, and range. You can read
more about semivariogram models here: Geostatistics: Theoretical Variogram Models.

Semivariogram has three basic properties:

• nugget: the initial value at a zero distance. In most cases, it is zero, but sometimes it represents a bias in
observations.

• sill: a distance where the semivariogram flattens and reaches approximately 95% of dissimilarity. Sometimes we
cannot find a sill; for example, if differences grow exponentially, but in pyinterpolate it is usually set close
to the variance of data,

• range: is a distance where a variogram reaches its sill. Larger distances are negligible for interpolation.

2.3. Tutorials 9

https://ml-gis-service.com/index.php/2022/04/01/geostatistics-theoretical-variogram-models/

Pyinterpolate, Release 0.5.1

We are not forced to know all of them at the beginning. The package may easily derive them all with the class
TheoriticalVariogram autofit() method.

We can create a theoretical model in two ways: 1. Manually, with the build_theoretical_variogram() function,
2. Semi-automatically, but here’s the catch: we must create a TheoreticalVariogram object first, and in the second
step, we may use the .autofit() method. Why is that? The reason is simple - if we want to fit a semivariogram
automatically, the algorithm (or creator) assumes we know what we are doing. And with knowledge, we can control
multiple parameters of the class.

We start from the build_theoretical_variogram() function and look into different models fitted to our data.

Models

We can choose from a set of predefined models:

• circular,

• cubic,

• exponential,

• gaussian,

• linear,

• power,

• spherical.

We will set the following:

• sill to the experimental variogram variance,

• nugget to zero,

• range to 8000 (we see in the experimental variogram plot that the semivariance flattens around this range, and
it becomes close to the variance).

[8]: sill = experimental_variogram.variance
nugget = 0
var_range = 8000

[9]: # circular

circular_model = build_theoretical_variogram(experimental_variogram=experimental_
→˓variogram,

model_name='circular',
sill=sill,
rang=var_range,
nugget=nugget)

[10]: print(circular_model)

* Selected model: Circular model
* Nugget: 0
* Sill: 489.8203263077297
* Range: 8000
* Spatial Dependency Strength is Unknown
* Mean Bias: -52.60629816538764

(continues on next page)

10 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

* Mean RMSE: 63.00280857591535
* Error-lag weighting method: None

+--------+--------------------+--------------------+---------------------+
| lag | theoretical | experimental | bias (y-y') |
+--------+--------------------+--------------------+---------------------+
500.0	38.953271455641215	14.716058620972868	-24.237212834668348
1000.0	77.75383379923626	34.85400868491261	-42.899825114323654
1500.0	116.24715805742842	57.712760007769795	-58.53439804965863
2000.0	154.2749647378938	82.49483539006093	-71.78012934783288
2500.0	191.6730553536057	111.4449493651956	-80.22810598841009
3000.0	228.26874220429437	143.4007980025356	-84.86794420175877
3500.0	263.87764398483665	175.10704725708965	-88.770596727747
4000.0	298.29949183176774	209.3522343651705	-88.94725746659725
4500.0	331.3123650670836	244.46785072173265	-86.84451434535094
5000.0	362.66434202230323	281.0897575749926	-81.57458444731066
5500.0	392.0606537618678	315.67549229122216	-76.38516147064564
6000.0	419.14238179486523	349.5718260502048	-69.57055574466045
6500.0	443.44740428898785	381.7274369750636	-61.71996731392426
7000.0	464.3273586391969	413.81104972218697	-50.51630891700995
7500.0	480.71958538405306	439.311684307325	-41.40790107672808
8000.0	489.8203263077297	461.6911951584344	-28.12913114929529
8500.0	489.8203263077297	482.51366131979273	-7.306664987936983
9000.0	489.8203263077297	501.63014408854025	11.809817780810533
9500.0	489.8203263077297	522.2111025684128	32.39077626068308
+--------+--------------------+--------------------+---------------------+

[11]: circular_model.plot(experimental=True)

2.3. Tutorials 11

Pyinterpolate, Release 0.5.1

[12]: # cubic

cubic_model = build_theoretical_variogram(experimental_variogram=experimental_variogram,
model_name='cubic',
sill=sill,
rang=var_range,
nugget=nugget)

[13]: print(cubic_model)

* Selected model: Cubic model
* Nugget: 0
* Sill: 489.8203263077297
* Range: 8000
* Spatial Dependency Strength is Unknown
* Mean Bias: -77.44307814715333
* Mean RMSE: 100.93081804872125
* Error-lag weighting method: None

+--------+--------------------+--------------------+---------------------+
| lag | theoretical | experimental | bias (y-y') |
+--------+--------------------+--------------------+---------------------+
500.0	12.34878902539015	14.716058620972868	2.3672695955827177
1000.0	45.255288629599086	34.85400868491261	-10.401279944686479
1500.0	92.68405535286398	57.712760007769795	-34.971295345094184
2000.0	148.9805383955685	82.49483539006093	-66.48570300550756
2500.0	209.04428231682044	111.4449493651956	-97.59933295162485
3000.0	268.48143737523486	143.4007980025356	-125.08063937269927
3500.0	323.7296800593239	175.10704725708965	-148.62263280223428
4000.0	372.1486463548962	209.3522343651705	-162.7964119897257
4500.0	412.06898029686596	244.46785072173265	-167.6011295751333
5000.0	442.79310035287546	281.0897575749926	-161.70334277788288
5500.0	464.5407861861308	315.67549229122216	-148.86529389490863
6000.0	478.33268834485466	349.5718260502048	-128.76086229464988
6500.0	485.8048634257556	381.7274369750636	-104.07742645069203
7000.0	488.947437258918	413.81104972218697	-75.13638753673104
7500.0	489.7604986615125	439.311684307325	-50.448814354187505
8000.0	489.8203263077297	461.6911951584344	-28.12913114929529
8500.0	489.8203263077297	482.51366131979273	-7.306664987936983
9000.0	489.8203263077297	501.63014408854025	11.809817780810533
9500.0	489.8203263077297	522.2111025684128	32.39077626068308
+--------+--------------------+--------------------+---------------------+

[14]: cubic_model.plot()

12 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

[15]: # Exponential model

exponential_model = build_theoretical_variogram(experimental_variogram=experimental_
→˓variogram,

model_name='exponential',
sill=sill,
rang=var_range,
nugget=nugget)

print(exponential_model)

* Selected model: Exponential model
* Nugget: 0
* Sill: 489.8203263077297
* Range: 8000
* Spatial Dependency Strength is Unknown
* Mean Bias: 62.87847144716388
* Mean RMSE: 97.41020702761479
* Error-lag weighting method: None

+--------+--------------------+--------------------+---------------------+
| lag | theoretical | experimental | bias (y-y') |
+--------+--------------------+--------------------+---------------------+
500.0	29.676713342689204	14.716058620972868	-14.960654721716336
1000.0	57.555405518182404	34.85400868491261	-22.701396833269797
1500.0	83.74501312199658	57.712760007769795	-26.032253114226783
2000.0	108.34787261497875	82.49483539006093	-25.853037224917827
2500.0	131.46012020525072	111.4449493651956	-20.01517084005512
3000.0	153.17206750253146	143.4007980025356	-9.771269499995867
3500.0	173.56855441271478	175.10704725708965	1.538492844374872
4000.0	192.72928065164504	209.3522343651705	16.622953713525447

(continues on next page)

2.3. Tutorials 13

Pyinterpolate, Release 0.5.1

(continued from previous page)

4500.0	210.72911717348904	244.46785072173265	33.7387335482436
5000.0	227.63839873061636	281.0897575749926	53.451358844376216
5500.0	243.5231987081728	315.67549229122216	72.15229358304936
6000.0	258.44558730726845	349.5718260502048	91.12623874293632
6500.0	272.4638740856379	381.7274369750636	109.26356288942571
7000.0	285.63283580350344	413.81104972218697	128.17821391868353
7500.0	298.003930464957	439.311684307325	141.30775384236796
8000.0	309.6254983912286	461.6911951584344	152.06569676720585
8500.0	320.54295111154215	482.51366131979273	161.97071020825058
9000.0	330.79894880965327	501.63014408854025	170.83119527888698
9500.0	340.4335670194438	522.2111025684128	181.777535548969
+--------+--------------------+--------------------+---------------------+

[16]: exponential_model.plot()

[17]: # Gaussian model

gaussian_model = build_theoretical_variogram(experimental_variogram=experimental_
→˓variogram,

model_name='gaussian',
sill=sill,
rang=var_range,
nugget=nugget)

print(gaussian_model)

* Selected model: Gaussian model
* Nugget: 0
* Sill: 489.8203263077297
* Range: 8000
* Spatial Dependency Strength is Unknown
* Mean Bias: 106.76795548020137

(continues on next page)

14 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

* Mean RMSE: 116.3487709038113
* Error-lag weighting method: None

+--------+--------------------+--------------------+--------------------+
| lag | theoretical | experimental | bias (y-y') |
+--------+--------------------+--------------------+--------------------+
500.0	1.9096284783003161	14.716058620972868	12.806430142672552
1000.0	7.593960284943274	34.85400868491261	27.26004839996933
1500.0	16.92106251490172	57.712760007769795	40.791697492868074
2000.0	29.676713342689204	82.49483539006093	52.81812204737172
2500.0	45.57258050587133	111.4449493651956	65.87236885932427
3000.0	64.25705194799532	143.4007980025356	79.14374605454027
3500.0	85.32815073541408	175.10704725708965	89.77889652167556
4000.0	108.34787261497875	209.3522343651705	101.00436175019173
4500.0	132.85723424545685	244.46785072173265	111.6106164762758
5000.0	158.39131498993746	281.0897575749926	122.69844258505512
5500.0	184.49361349105533	315.67549229122216	131.18187880016683
6000.0	210.72911717348904	349.5718260502048	138.84270887671573
6500.0	236.69559082440182	381.7274369750636	145.03184615066178
7000.0	262.0327201487193	413.81104972218697	151.77832957346766
7500.0	286.42888738780334	439.311684307325	152.88279691952164
8000.0	309.6254983912286	461.6911951584344	152.06569676720585
8500.0	331.41891440687124	482.51366131979273	151.0947469129215
9000.0	351.66015926974364	501.63014408854025	149.9699848187966
9500.0	370.2526675939889	522.2111025684128	151.95843497442388
+--------+--------------------+--------------------+--------------------+

[18]: gaussian_model.plot()

2.3. Tutorials 15

Pyinterpolate, Release 0.5.1

[19]: # Linear model

linear_model = build_theoretical_variogram(experimental_variogram=experimental_variogram,
model_name='linear',
sill=sill,
rang=var_range,
nugget=nugget)

print(linear_model)

* Selected model: Linear model
* Nugget: 0
* Sill: 489.8203263077297
* Range: 8000
* Spatial Dependency Strength is Unknown
* Mean Bias: -21.58683474038296
* Mean RMSE: 28.218692107535404
* Error-lag weighting method: None

+--------+--------------------+--------------------+---------------------+
| lag | theoretical | experimental | bias (y-y') |
+--------+--------------------+--------------------+---------------------+
500.0	30.613770394233107	14.716058620972868	-15.897711773260239
1000.0	61.227540788466214	34.85400868491261	-26.373532103553607
1500.0	91.84131118269931	57.712760007769795	-34.12855117492952
2000.0	122.45508157693243	82.49483539006093	-39.9602461868715
2500.0	153.06885197116554	111.4449493651956	-41.623902605969946
3000.0	183.68262236539863	143.4007980025356	-40.281824362863034
3500.0	214.29639275963174	175.10704725708965	-39.189345502542096
4000.0	244.91016315386486	209.3522343651705	-35.55792878869437
4500.0	275.52393354809794	244.46785072173265	-31.056082826365298
5000.0	306.1377039423311	281.0897575749926	-25.04794636733851
5500.0	336.7514743365642	315.67549229122216	-21.075982045342016
6000.0	367.36524473079726	349.5718260502048	-17.79341868059248
6500.0	397.9790151250304	381.7274369750636	-16.251578149966804
7000.0	428.5927855192635	413.81104972218697	-14.781735797076522
7500.0	459.20655591349663	439.311684307325	-19.894871606171648
8000.0	489.8203263077297	461.6911951584344	-28.12913114929529
8500.0	489.8203263077297	482.51366131979273	-7.306664987936983
9000.0	489.8203263077297	501.63014408854025	11.809817780810533
9500.0	489.8203263077297	522.2111025684128	32.39077626068308
+--------+--------------------+--------------------+---------------------+

[20]: linear_model.plot()

16 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

[21]: # Power model

power_model = build_theoretical_variogram(experimental_variogram=experimental_variogram,
model_name='power',
sill=sill,
rang=var_range,
nugget=nugget)

print(power_model)

* Selected model: Power model
* Nugget: 0
* Sill: 489.8203263077297
* Range: 8000
* Spatial Dependency Strength is Unknown
* Mean Bias: 46.89133587829636
* Mean RMSE: 58.334699200244835
* Error-lag weighting method: None

+--------+--------------------+--------------------+--------------------+
| lag | theoretical | experimental | bias (y-y') |
+--------+--------------------+--------------------+--------------------+
500.0	1.9133606496395692	14.716058620972868	12.802697971333298
1000.0	7.653442598558277	34.85400868491261	27.20056608635433
1500.0	17.22024584675612	57.712760007769795	40.49251416101367
2000.0	30.613770394233107	82.49483539006093	51.88106499582782
2500.0	47.83401624098923	111.4449493651956	63.61093312420637
3000.0	68.88098338702449	143.4007980025356	74.51981461551111
3500.0	93.75467183233889	175.10704725708965	81.35237542475076
4000.0	122.45508157693243	209.3522343651705	86.89715278823806
4500.0	154.98221262080511	244.46785072173265	89.48563810092753

(continues on next page)

2.3. Tutorials 17

Pyinterpolate, Release 0.5.1

(continued from previous page)

5000.0	191.33606496395691	281.0897575749926	89.75369261103566
5500.0	231.5166386063879	315.67549229122216	84.15885368483427
6000.0	275.52393354809794	349.5718260502048	74.04789250210683
6500.0	323.3579497890872	381.7274369750636	58.369487185976425
7000.0	375.01868732935554	413.81104972218697	38.79236239283142
7500.0	430.50614616890306	439.311684307325	8.805538138421923
8000.0	489.8203263077297	461.6911951584344	-28.12913114929529
8500.0	489.8203263077297	482.51366131979273	-7.306664987936983
9000.0	489.8203263077297	501.63014408854025	11.809817780810533
9500.0	489.8203263077297	522.2111025684128	32.39077626068308
+--------+--------------------+--------------------+--------------------+

[22]: power_model.plot()

[23]: # Spherical model

spherical_model = build_theoretical_variogram(experimental_variogram=experimental_
→˓variogram,

model_name='spherical',
sill=sill,
rang=var_range,
nugget=nugget)

print(spherical_model)

* Selected model: Spherical model
* Nugget: 0
* Sill: 489.8203263077297
* Range: 8000
* Spatial Dependency Strength is Unknown
* Mean Bias: -72.94546270439245

(continues on next page)

18 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

* Mean RMSE: 87.44243944688779
* Error-lag weighting method: None

+--------+--------------------+--------------------+---------------------+
| lag | theoretical | experimental | bias (y-y') |
+--------+--------------------+--------------------+---------------------+
500.0	45.86086307104843	14.716058620972868	-31.14480445007556
1000.0	91.36297102028944	34.85400868491261	-56.50896233537683
1500.0	136.1475687259156	57.712760007769795	-78.4348087181458
2000.0	179.85590106611951	82.49483539006093	-97.36106567605859
2500.0	222.12921291909373	111.4449493651956	-110.68426355389813
3000.0	262.6087491630309	143.4007980025356	-119.2079511604953
3500.0	300.9357546761235	175.10704725708965	-125.82870741903386
4000.0	336.7514743365642	209.3522343651705	-127.39923997139368
4500.0	369.69715302254554	244.46785072173265	-125.22930230081289
5000.0	399.4140356122601	281.0897575749926	-118.3242780372675
5500.0	425.54336698390046	315.67549229122216	-109.8678746926783
6000.0	447.7263920156592	349.5718260502048	-98.15456596545442
6500.0	465.6043555857289	381.7274369750636	-83.87691861066531
7000.0	478.8185025723022	413.81104972218697	-65.00745285011521
7500.0	487.0100778535716	439.311684307325	-47.69839354624662
8000.0	489.8203263077297	461.6911951584344	-28.12913114929529
8500.0	489.8203263077297	482.51366131979273	-7.306664987936983
9000.0	489.8203263077297	501.63014408854025	11.809817780810533
9500.0	489.8203263077297	522.2111025684128	32.39077626068308
+--------+--------------------+--------------------+---------------------+

[24]: spherical_model.plot()

A quick look into plots, and we can bet that the best model is linear. We can read each table printed with the print()

2.3. Tutorials 19

Pyinterpolate, Release 0.5.1

method, but instead, we will read Root Mean Squared Error of each model and select the model with the lowest value
of RMSE.

[25]: models = [
circular_model, cubic_model, exponential_model, gaussian_model, linear_model, power_

→˓model, spherical_model
]

lowest_rmse = np.inf
chosen_model = ''

for _model in models:

Get attrs
model_name = _model.name
model_rmse = _model.rmse

Check error
if model_rmse < lowest_rmse:

lowest_rmse = model_rmse
chosen_model = model_name

Print status
msg = f'Model: {model_name}, RMSE: {model_rmse}'
print(msg)

msg = f'The best model is {chosen_model} with RMSE {lowest_rmse}'
print(msg)

Model: circular, RMSE: 63.00280857591535
Model: cubic, RMSE: 100.93081804872125
Model: exponential, RMSE: 97.41020702761479
Model: gaussian, RMSE: 116.3487709038113
Model: linear, RMSE: 28.218692107535404
Model: power, RMSE: 58.334699200244835
Model: spherical, RMSE: 87.44243944688779
The best model is linear with RMSE 28.218692107535404

4) Set automatically semivariogram model

We can find the optimal semivariogram model automatically, but we can’t do it with the
build_theoretical_variogram() function. Instead, we use the TheoreticalVariogram class. Manual
initialization allows us to find the best set of hyperparameters automatically.

This process has two steps:

1. The TheoreticalVariogram class object initialization.

2. Fitting the best model and finding the optimal set of parameters with the .autofit() method.

The autofit() method takes multiple parameters. The most important for us are:

• experimental_variogram - the experimental variogram object (ExperimentalVariogram type),

• model_name or model_types - the first argument is a name of the model. The second is a list with names to
test - if you pass it, then algorithm will check every model from this list. Basic model_name parameters are:

20 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

– circular,

– cubic,

– exponential,

– gaussian,

– linear,

– power,

– spherical,

– (s) all: checks all available model types,

– (s) safe: check linear, spherical, and power models.

If you want to test different set of models instead then use model_types with list of models, as for example:
['circular', 'power']. You may choose any model excluding all and safe keywords which refer to multiple
models.

• nugget - nugget (bias) of a variogram. If given, then the nugget is fixed to this value.

• min_nugget - default = 0.0 - the minimal fraction of the variance at a distance 0 to search for the optimal nugget,

• max_nugget - default = 0.5 - the maximum fraction of the variance at a distance 0 to search for the optimal
nugget,

• number_of_nuggets - default = 16 - how many equally spaced steps between min_nugget and max_nugget
to check.

• rang - if given, then the range is fixed to this value.

• min_range - default = 0.1 - the minimal fraction of a study (maximum) extent to find the optimal range.

• max_range - default = 0.5 - the maximum fraction of a study (maximum) extent to find the optimal range.

• number_of_ranges - default = 16 - how many equally spaced ranges are tested between min_range and
max_range.

• sill - if given, it is fixed to this value.

• min_sill - default = 0 - the minimal fraction of the dataset variance to find the sill.

• max_sill - default = 1 - the maximum fraction of the dataset variance to find the sill. It should be lower or
equal to 1, but it is possible to set it above. A warning is printed if max_sill is greater than 1.

• number_of_sills - default = 16 - how many equally spaced sill values are tested between min_sill and
max_sill.

• error_estimator - default = ‘rmse’ - Error estimation to choose the best model. Available options are:

– rmse: Root Mean Squared Error,

– mae: Mean Absolute Error,

– bias: Forecast Bias,

– smape: Symmetric Mean Absolute Percentage Error.

In the first run, we will set nugget, sill, and range as fixed values, and we will see which model algorithm chooses:

[26]: semivariogram_model = TheoreticalVariogram()

2.3. Tutorials 21

Pyinterpolate, Release 0.5.1

[27]: fitted = semivariogram_model.autofit(
experimental_variogram=experimental_variogram,
model_name='all',
nugget=0,
rang=var_range,
sill=sill)

[28]: fitted

[28]: {'model_name': 'linear',
'nugget': 0,
'sill': 489.8203263077297,
'range': 8000,
'fitted_model': array([[500. , 30.61377039],

[1000. , 61.22754079],
[1500. , 91.84131118],
[2000. , 122.45508158],
[2500. , 153.06885197],
[3000. , 183.68262237],
[3500. , 214.29639276],
[4000. , 244.91016315],
[4500. , 275.52393355],
[5000. , 306.13770394],
[5500. , 336.75147434],
[6000. , 367.36524473],
[6500. , 397.97901513],
[7000. , 428.59278552],
[7500. , 459.20655591],
[8000. , 489.82032631],
[8500. , 489.82032631],
[9000. , 489.82032631],
[9500. , 489.82032631]]),

'rmse': 28.218692107535404,
'bias': nan,
'mae': nan,
'smape': nan}

The chosen model is linear, automatically set as the class parameter. The algorithm performs the same steps as we did
before. It has selected a model based on the RMSE. All other parameters were untouched.

Now, we let the algorithm find the optimal sill and range, and we check if our RMSE will be better with a different pair
of sill and range:

[29]: fitted = semivariogram_model.autofit(experimental_variogram=experimental_variogram,␣
→˓nugget=0)

[30]: print(fitted)

{'model_name': 'linear', 'nugget': 0, 'sill': 489.8203263077297, 'range': 8990.
→˓27235812866, 'fitted_model': array([[500. , 27.2416845],

[1000. , 54.483369],
[1500. , 81.7250535],
[2000. , 108.966738],
[2500. , 136.2084225],

(continues on next page)

22 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

[3000. , 163.450107],
[3500. , 190.6917915],
[4000. , 217.933476],
[4500. , 245.1751605],
[5000. , 272.41684501],
[5500. , 299.65852951],
[6000. , 326.90021401],
[6500. , 354.14189851],
[7000. , 381.38358301],
[7500. , 408.62526751],
[8000. , 435.86695201],
[8500. , 463.10863651],
[9000. , 489.82032631],
[9500. , 489.82032631]]), 'rmse': 21.744673287932994, 'bias': nan, 'mae':␣

→˓nan, 'smape': nan}

After .autofit() our algorithm has chosen a different set of parameters and a model type! Let’s plot it against
experimental variogram:

[31]: semivariogram_model.plot()

Compare this model to the linear model fitted before:

[32]: _lags = semivariogram_model.lags

plt.figure(figsize=(20, 8))
plt.scatter(_lags, experimental_variogram.experimental_semivariances, color='#762a83')
→˓# Experimental
plt.plot(_lags, linear_model.fitted_model[:, 1], ':p', color='#e7d4e8', mec='black')
plt.plot(_lags, semivariogram_model.fitted_model[:, 1], ':o', color='#1b7837', mec='black
→˓')

(continues on next page)

2.3. Tutorials 23

Pyinterpolate, Release 0.5.1

(continued from previous page)

plt.title('Comparison of theoretical semivariance models')
plt.legend(['Experimental Semivariance',

'Linear',
'Cubic'])

plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

5) Export model

Models could be exported and used for other purposes. It is vital for the semivariogram regularization. Those
calculations are computationally intensive, and in production, it is not a good idea to build a complete pipeline; we
divide it into two steps.

Model can be exported to dict with .to_dict() method or to json with .to_json() method:

[33]: # Set spherical model

dict_model = semivariogram_model.to_dict()

Save to json
semivariogram_model.to_json('output/semivariogram_calculation_model.json')

6) Import model

We can import a semivariogram model into a new TheoreticalSemivariogram class instance without passing the
experimental semivariogram or actual data points. It is helpful for some applications focused on kriging, where we are
sure that our semivariogram model fits data well.

We can import a model with two methods .from_dict() if we have our model parameters in the Python dictionary
or .from_json() if model parameters are stored in a flat file:

24 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

[34]: other_model_from_dict = TheoreticalVariogram()

print(other_model_from_dict)

Theoretical model is not calculated yet. Use fit() or autofit() methods to build or find␣
→˓a model or import model with from_dict() or from_json() methods.

[35]: other_model_from_dict.from_dict(dict_model)
print(other_model_from_dict)

* Selected model: Linear model
* Nugget: 0.0
* Sill: 489.8203263077297
* Range: 8990.27235812866
* Spatial Dependency Strength is Unknown
* Mean Bias: 0.0
* Mean RMSE: 0.0
* Error-lag weighting method: None

[36]: other_model_from_json = TheoreticalVariogram()
print(other_model_from_json)

Theoretical model is not calculated yet. Use fit() or autofit() methods to build or find␣
→˓a model or import model with from_dict() or from_json() methods.

[37]: other_model_from_json.from_json('output/semivariogram_calculation_model.json')

[38]: print(other_model_from_json)

* Selected model: Linear model
* Nugget: 0.0
* Sill: 489.8203263077297
* Range: 8990.27235812866
* Spatial Dependency Strength is Unknown
* Mean Bias: 0.0
* Mean RMSE: 0.0
* Error-lag weighting method: None

Where to go from here?

• A.1.2 Theoretical Models

• A.1.3 Spatial Dependence Index

• A.2.1 Directional Semivariogram

• A.2.2 Variogram Point Cloud

• A.2.3 Experimental Variogram and Variogram Point Cloud Classes

• B.1.1 Ordinary and Simple Kriging

2.3. Tutorials 25

Pyinterpolate, Release 0.5.1

Changelog

Date Change description Author
2023-
08-18

The tutorial was refreshed and set along with the 0.5.0 version of the package @Simon-
Molinsky

2023-
04-15

Tutorial debugged and updated to the 0.4.1 version of the package @Simon-
Molinsky

2023-
03-11

Spatial Dependence Index @Simon-
Molinsky

2022-
11-05

Tutorial updated for the 0.3.5 version of the package @Simon-
Molinsky

2022-
08-09

Tutorial updated to work with version 0.3.0 @Simon-
Molinsky

2021-
12-14

Sill selection was upgraded: now optimal sill is derived from the grid search within the
TheoreticalSemivariogram class

@Simon-
Molinsky

2021-
12-13

Changed behavior of select_values_in_range() function @Simon-
Molinsky

2021-
10-13

Refactored TheoreticalSemivariogram (name change of class attribute) @ethmtrgt

2021-
05-28

Updated paths for input/output data @Simon-
Molinsky

2021-
05-11

Refactored TheoreticalSemivariogram class @Simon-
Molinsky

2021-
03-31

Update related to the change of semivariogram weighting @Simon-
Molinsky

[]:

A.1.2 Semivariogram models

Table of Contents:

1. Create random surface,

2. Create the experimental variogram,

3. Set all variogram models,

4. Compare variogram models.

Introduction

We can find multiple semivariogram models included in the Pyinterpolate package. All of them are derived from
literature. In this tutorial, we will compare those models on an artificial surface. We will learn the following:

• how to create an artificial surface with Python,

• what variogram models are available for us,

• the difference between variogram models.

26 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Import packages

[1]: from scipy.signal import convolve2d
from scipy.sparse import coo_matrix

from pyinterpolate import build_experimental_variogram
from pyinterpolate.variogram.theoretical.models import *

import matplotlib.pyplot as plt

1) Create a random surface

In the first step, we will create the artificial surface. We choose an artificial object instead of real-world observations
because we have more control over variogram parameters. We want to compare different models. We should limit
the number of unknowns in our dataset to a bare minimum. But don’t be disappointed! Our surface won’t be boring
because we will generate it from an exciting function named logistic_map. It is the polynomial mapping that, for some
parameters, presents chaotic behavior.

Logistic map is a recurrent relation of the form:

𝑥𝑛+1 = 𝑟𝑥𝑛(1− 𝑥𝑛),

Where: - 𝑥: is a mapped value at a step 𝑛 or 𝑛 + 1. Its state depends only on the previous step and initial set of
parameters, 𝑥 ∈ [0, 1]. - 𝑟: is a special parameter, and its value leads to the different behavior of a system. For us, the
most important is a set of possible 𝑟 values within limits [3.5, 4] where the system has chaotic behavior more.

We will use the generate_logistic_map function that takes three parameters:

• r: the same as 𝑟 from the logistic map system, we set it to 3.9.

• size: the length of a generated sequence. It should be reasonably large to create a surface. We set it to 10k.

• initial_ratio: initial x value between 0 and 1. We set it to 0.33.

[2]: # Create logistic map

def generate_logistic_map(r: float, size: int, initial_ratio: float) -> np.array:
rxn(1-xn)
vals = [initial_ratio]
for _ in range(size-1):

new_val = r * vals[-1] * (1 - vals[-1])
vals.append(new_val)

return np.array(vals)

[3]: values = generate_logistic_map(3.9, 10000, 0.33)

At this point, our data is a 1-D array and we can represent it as a signal:

[4]: plt.figure(figsize=(18, 8))
plt.plot(values[0:200])
plt.show()

2.3. Tutorials 27

https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Logistic_map#Behavior_dependent_on_r

Pyinterpolate, Release 0.5.1

Let’s reshape this signal into a 2-D matrix:

[5]: # Create surface from array

surface = np.reshape(values, (100, 100))

[6]: plt.figure(figsize=(10, 10))
plt.imshow(surface, cmap='cividis')
plt.show()

28 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

The spatial correlation of this structure is very weak. We can change it with a simple blur filter. Its size will be our
range parameter!

[7]: # Slightly blur image with simple mean filter

mean_filter = np.ones(shape=(7, 7))

surf_blurred = convolve2d(surface, mean_filter, boundary='wrap')

And here we are! We have our artificial surface for testing purposes!

[8]: plt.figure(figsize=(10, 10))
plt.imshow(surf_blurred, cmap='cividis')

(continues on next page)

2.3. Tutorials 29

Pyinterpolate, Release 0.5.1

(continued from previous page)

plt.show()

2) Create the experimental semivariogram

We must create the experimental variogram before we start comparing theoretical models. Our 2-D surface must be
transformed into an array:

[[coordinate x1, coordinate y1, value1],
[coordinate x2, coordinate y2, value2],
[...],]

The path to transform a 2D surface into pixel coordinates has two steps. In the first step, we use scipy to make a sparse

30 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

representation of the surface, and in the second step, we use numpy to transform the sparse representation into an array:

[9]: # Transform data into x, y, val array

[10]: sparse_data = coo_matrix(surf_blurred)

[11]: # data, col, row == value, x, y

[12]: xyval = np.asarray([sparse_data.col, sparse_data.row, sparse_data.data]).T

We know our data - the effective range of correlation is seven steps, and we have set the mean filter to this size. With
this knowledge, we will set step_size into 2 units and max_range into 20 (way above the actual maximum range,
which is 7, but we show in this way how variograms behave at a large distance).

[13]: # Get experimental variogram

[14]: experimental = build_experimental_variogram(xyval, 2, 20)

[15]: semivars = experimental.experimental_semivariance_array.copy()

[16]: plt.figure(figsize=(15, 6))
plt.scatter(semivars[:, 0], semivars[:, 1])
plt.show()

We’ve read the plot and decided to set:

• nugget to 0,

• sill to 1.3,

• range to 7,

• lags to list of distances from 2 to 18.

We can create the theoretical variogram from scratch without calling the build_theoretical_variogram() func-
tion or the TheoreticalVariogram class. Those three parameters and the lags are all that we need for modeling.

2.3. Tutorials 31

Pyinterpolate, Release 0.5.1

[17]: # Set nugget, sill and range

[18]: _nugget = 0
_sill = 1.3
_range = 7
_lags = semivars[:, 0].copy()

3) Set all variogram models

Variogram models are imported as external functions and are not part of any object. We can use this fact, import all
models, and calculate their outputs. We will calculate and show seven different theoretical models compared to the
experimental variogram.

Models to calculate:

• circular,

• cubic,

• exponential,

• gaussian,

• linear,

• power,

• spherical.

[19]: # Crete different models: circular, cubic, exponential, gaussian, linear, power,␣
→˓spherical

[20]: circular = circular_model(lags=_lags,
nugget=_nugget,
sill=_sill,
rang=_range)

cubic = cubic_model(lags=_lags,
nugget=_nugget,
sill=_sill,
rang=_range)

exponential = exponential_model(lags=_lags,
nugget=_nugget,
sill=_sill,
rang=_range)

gaussian = gaussian_model(lags=_lags,
nugget=_nugget,
sill=_sill,
rang=_range)

linear = linear_model(lags=_lags,
nugget=_nugget,
sill=_sill,

(continues on next page)

32 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

rang=_range)

power = power_model(lags=_lags,
nugget=_nugget,
sill=_sill,
rang=_range)

spherical = spherical_model(lags=_lags,
nugget=_nugget,
sill=_sill,
rang=_range)

With all models calculated, let’s take a look at their output. Before we jump into the last step, which model works
optimally with the experimental variogram? (It is a tricky question!)

[21]: # Plot circular

plt.figure(figsize=(15, 6))
plt.scatter(_lags, semivars[:, 1])
plt.plot(_lags, circular)
plt.legend(['Experimental Semivariance', 'Modeled Curve - Circular'])
plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

[22]: # Plot cubic

plt.figure(figsize=(15, 6))
plt.scatter(_lags, semivars[:, 1])
plt.plot(_lags, cubic)
plt.legend(['Experimental Semivariance', 'Modeled Curve - Cubic'])
plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

2.3. Tutorials 33

Pyinterpolate, Release 0.5.1

[23]: # Plot exponential

plt.figure(figsize=(15, 6))
plt.scatter(_lags, semivars[:, 1])
plt.plot(_lags, exponential)
plt.legend(['Experimental Semivariance', 'Modeled Curve - Exponential'])
plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

[24]: # Plot gaussian

plt.figure(figsize=(15, 6))
plt.scatter(_lags, semivars[:, 1])
plt.plot(_lags, gaussian)
plt.legend(['Experimental Semivariance', 'Modeled Curve - Gaussian'])
plt.xlabel('Distance')

(continues on next page)

34 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

plt.ylabel('Semivariance')
plt.show()

[25]: # Plot linear

plt.figure(figsize=(15, 6))
plt.scatter(_lags, semivars[:, 1])
plt.plot(_lags, linear)
plt.legend(['Experimental Semivariance', 'Modeled Curve - Linear'])
plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

[26]: # Plot power

plt.figure(figsize=(15, 6))
plt.scatter(_lags, semivars[:, 1])

(continues on next page)

2.3. Tutorials 35

Pyinterpolate, Release 0.5.1

(continued from previous page)

plt.plot(_lags, power)
plt.legend(['Experimental Semivariance', 'Modeled Curve - Power'])
plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

[27]: # Plot spherical

plt.figure(figsize=(15, 6))
plt.scatter(_lags, semivars[:, 1])
plt.plot(_lags, spherical)
plt.legend(['Experimental Semivariance', 'Modeled Curve - Spherical'])
plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

What was your guess?

36 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

. . .

I hope we have chosen circular or linear models! But we should be careful with the final opinion and even more
careful if we let the algorithm decide which model is the best based on the root mean squared error metric (RMSE).
For us, the best model is always the model that has the best fit for the closest distances. A model with low RMSE may
be “great” with distances from 10 to 18. . . which oscillate around the sill of our data and are useless for weighting
(weight is constant from some distance).

4) Compare semivariogram models

The last part is a comparison of variogram models. We will still use our “own eyes” to decide which model is the best,
but this time we will plot all of them in a single plot.

[28]: # Plot ALL models

plt.figure(figsize=(20, 8))
plt.scatter(_lags, semivars[:, 1], color='#762a83')
plt.plot(_lags, circular, ':8', color='#9970ab', mec='black')
plt.plot(_lags, cubic, ':s', color='#c2a5cf', mec='black')
plt.plot(_lags, exponential, ':p', color='#e7d4e8', mec='black')
plt.plot(_lags, gaussian, ':+', color='#d9f0d3', mec='black')
plt.plot(_lags, linear, ':2', color='#a6dba0', mec='black')
plt.plot(_lags, power, ':*', color='#5aae61', mec='black')
plt.plot(_lags, spherical, ':o', color='#1b7837', mec='black')
plt.title('Comparison of theoretical semivariance models')
plt.legend(['Experimental Semivariance',

'Circular',
'Cubic',
'Exponential',
'Gaussian',
'Linear',
'Power',
'Spherical'])

plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

2.3. Tutorials 37

Pyinterpolate, Release 0.5.1

We observe that the lowest distance from a modeled value to the experimental curve at a small distance has. . .

Where to go from here?

• A.1.3 Spatial Dependence Index

• A.2.1 Directional Semivariogram

• A.2.2 Variogram Point Cloud

• A.2.3 Experimental Variogram and Variogram Point Cloud Classes

• B.1.1 Ordinary and Simple Kriging

Changelog

Date Change description Author
2023-08-18 The tutorial was refreshed and set along with the 0.5.0 version of the package @SimonMolinsky
2022-11-05 The tutorial updated for the 0.3.5 version of the package @SimonMolinsky
2022-08-16 The first release of tutorial @SimonMolinsky

[]:

A.1.3 Spatial Dependence Index

Is dataset worth modeling?

Table of Contents:

1. What is the spatial dependcy index?

2. Why do we use spatial dependency index?

3. Example: The comparison of different Spatial Dependence Index over the same extent but different elements.

4. API links.

Introduction

In this tutorial, we will learn how to estimate spatial dependency index. Algorithm is based on the work:

[1] CAMBARDELLA, C.A.; MOORMAN, T.B.; PARKIN, T.B.; KARLEN, D.L.; NOVAK, J.M.; TURCO, R.
F.; KONOPKA, A.E. Field-scale variability of soil properties in central Iowa soils. Soil
Science Society of America Journal, v. 58, n. 5, p. 1501-1511, 1994.

38 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

1. What is the spatial dependency index?

The spatial dependency index (SDI) measures the strength of a spatial process we are modeling. SDI is normalized to
the interval between 0 and 1. Therefore, we can transform it into percentages and assign an order of spatial dependency
from weak to strong.

The SDI is a ratio of the nugget to the total variance (sill) of a model:

𝑆𝐷𝐼 =
𝑛𝑢𝑔𝑔𝑒𝑡

𝑠𝑖𝑙𝑙
* 100

Whenever we fit a theoretical variogram with the pyinterpolate package, SDI is calculated, and we will take advan-
tage of it in the examples. Two values represent SDI:

• numeric, a ratio of nugget and sill in percent,

• categorical, a description of a spatial dependency strength.

There are four levels of spatial dependency.

Lower Limit (included) Upper Limit (excluded) Strength
0 25 strong
25 75 moderate
75 95 weak
95 inf no spatial dependence

The lower the ratio, the most substantial spatial dependence. If the ratio is greater than 75 percent, we should be
cautious with spatial modeling because spatial similarities may not explain the process.

2. Why do we use the spatial dependency index?

In a world where Tobler’s Law can be applied to every spatial phenomenon, we might always use kriging without
consideration. We know that spatial dependence exists, and close neighbors are always similar.

This world is not our world! Not every process follows Tobler’s Law. We can find examples sampled over the same
area and scale, but their spatial dependence indexes differ. In [1] (SDI in pyinterpolate is based on this publica-
tion), multiple chemical compounds are sampled from the same field. Every compound has its spatial distribution and
variogram. Some soil parameters are not spatially dependent (for example, Mg or Ca that are randomly distributed).

The spatial dependence index level marks the next decision on what to do with the data.

• Strong: just krige it!

• Moderate: there might be some other thing that explains process variation.

• Weak: the other non-spatial process has more influence on data than spatial similarities.

• No spatial dependence: the process is random, or spatial dependencies cannot explain variance.

Note: Be careful because the last two points are red flags, BUT sometimes processes with a low variogram variability
at one scale may be explained with spatial relations at a changed scale. A practical example is a comparison of rental
apartment prices per night: if you look at the scale of hundreds of kilometers, the spatial dependence may be very weak
or none. On the other hand, the spatial similarity between prices of apartments close to each other (up to 10 kilometers,
6 miles) tends to show a classic variogram curve. The reason is simple: most managers and algorithms use information
about the pricing of the closest neighbors, and neighborhood prices are affected by the same external objects or events.

We should look into the spatial dependence index to ensure our path leads us toward meaningful results.

2.3. Tutorials 39

Pyinterpolate, Release 0.5.1

Example: Spatial Dependence over the same study extent but for different elements

We will compare the spatial dependence index of four elements: cadmium, copper, lead, and zinc. We use the meuse
dataset. The dataset comes from:

Pebesma, Edzer. (2009). The meuse data set: a tutorial for the gstat R package -> [link
to the publication](https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf)

[1]: import numpy as np
import pandas as pd
import pyinterpolate as ptp

[2]: MEUSE_FILE = 'samples/point_data/csv/meuse/meuse.csv'

Variogram parameters
STEP_SIZE = 100
MAX_RANGE = 1600
ALLOWED_MODELS = 'safe'

Elements
ELEMENTS = ['cadmium', 'copper', 'zinc', 'lead']
COLS = ['x', 'y']
COLS.extend(ELEMENTS)

[3]: df = pd.read_csv(MEUSE_FILE, usecols=COLS)
df.head()

[3]: x y cadmium copper lead zinc
0 181072 333611 11.7 85 299 1022
1 181025 333558 8.6 81 277 1141
2 181165 333537 6.5 68 199 640
3 181298 333484 2.6 81 116 257
4 181307 333330 2.8 48 117 269

Data is skewed for every element in the table. Before we start variogram modeling, we must transform it into a dis-
tribution close to normality. We will use a logarithmic transform, pass data into an experimental variogram, and then
create theoretical models with the autofit() method. We will use grid search to find the best possible nugget value.

[4]: for element in ELEMENTS:
Prepare data
ds = df[['x', 'y', element]].copy()
ds[element] = np.log(ds[element])
arr = ds.values

Get experimental variogram
exp_var = ptp.build_experimental_variogram(arr, step_size=STEP_SIZE, max_range=MAX_

→˓RANGE)

Find optimal theoretical model
optimal_model = ptp.TheoreticalVariogram()
optimal_model.autofit(experimental_variogram=exp_var, model_name=ALLOWED_MODELS, max_

→˓nugget=0.8)
print('Optimal model for element {} has {:.2f}% of nugget to sill ratio. Spatial␣

(continues on next page)

40 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

→˓Dependence is {}.'.format(
element, optimal_model.spatial_dependency_ratio, optimal_model.spatial_

→˓dependency_strength
))
optimal_model.plot()

print('\n---\n')

Optimal model for element cadmium has 36.02% of nugget to sill ratio. Spatial Dependence␣
→˓is moderate.

Optimal model for element copper has 20.31% of nugget to sill ratio. Spatial Dependence␣
→˓is strong.

2.3. Tutorials 41

Pyinterpolate, Release 0.5.1

Optimal model for element zinc has 20.08% of nugget to sill ratio. Spatial Dependence is␣
→˓strong.

Optimal model for element lead has 20.22% of nugget to sill ratio. Spatial Dependence is␣
→˓strong.

42 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

The strength of spatial dependence differs mostly between Cadmium and other elements.

API

The spatial dependence index may be calculated directly with the calculate_spatial_dependence_index() func-
tion that takes two parameters: nugget and sill. It returns Tuple with spatial dependence ratio and spatial depen-
dence strength.

Another way is to calculate TheoreticalVariogram with a grid search option for nugget (just leave the nugget
parameter as None and the algorithm will find the optimal nugget value).

Where to go from here?

• A.2.1 Directional Semivariogram

• A.2.2 Variogram Point Cloud

• A.2.3 Experimental Variogram and Variogram Point Cloud Classes

• B.1.1 Ordinary and Simple Kriging

2.3. Tutorials 43

Pyinterpolate, Release 0.5.1

Changelog

Date Change description Author
2023-08-19 The tutorial was refreshed and set along with the 0.5.0 version of the package @SimonMolinsky
2023-04-15 Tutorial debugged and updated to the 0.4.1 version of the package @SimonMolinsky
2023-04-08 The first version of the tutorial @SimonMolinsky

[]:

A.2.1 Directional semivariograms

Table of Contents:

1. Read point data,

2. Create directional and isotropic semivariograms,

3. Compare semivariograms,

4. Compare triangular vs elliptical neighbors selection methods.

Introduction

In this tutorial, we will learn about directional semivariograms, how to set the angle of direction, and the tolerance
parameter. We compare two neighbor selection methods: triangular, which is fast, and elliptical, which is accurate.

A directional process

Not every spatial process may be described by isotropic semivariograms. Sometimes we see a specific trend in one
direction (N-S, W-E, or NE-SW, NW-SE). A well-performed analysis includes directions. That’s why we will learn to
write code in pyinterpolate that retrieves the directional semivariogram.

We use the air pollution data.

Note: if you are a machine learning enthusiast, it will be easier to understand direction as an additional
feature to model semivariance.

[3]: import geopandas as gpd
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

Experimental variogram
from pyinterpolate import build_experimental_variogram

44 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

1) Read and show point data

[4]: DATASET = 'PM2.5'

[5]: ds = pd.read_csv('samples/directional_variogram_PM25_20220922.csv', index_col='station_id
→˓')
ds.head()

[5]: y x PM2.5
station_id
659 50.529892 22.112467 7.12765
736 54.380279 18.620274 4.66432
861 54.167847 19.410942 3.00739
266 51.259431 22.569133 7.10000
355 51.856692 19.421231 2.00000

[6]: def df2gdf(df, lon_col='x', lat_col='y', epsg=4326, crs=None):
"""
Function transforms DataFrame into GeoDataFrame.

Parameters

df : pandas DataFrame

lon_col : str, default = 'x'
Longitude column name.

lat_col : str, default = 'y'
Latitude column name.

epsg : Union[int, str], default = 4326
EPSG number of projection.

crs : str, default = None
Coordinate Reference System of data.

Returns

gdf : GeoPandas GeoDataFrame

GeoDataFrame with set geometry column ('geometry'), CRS, and all columns from the␣
→˓passed DataFrame.

"""

geometry = gpd.points_from_xy(x=df[lon_col], y=df[lat_col])
geometry.name = 'geometry'
gdf = gpd.GeoDataFrame(df, geometry=geometry)

if crs is None:
gdf.set_crs(epsg=epsg, inplace=True)

else:
gdf.set_crs(crs=crs, inplace=True)

(continues on next page)

2.3. Tutorials 45

Pyinterpolate, Release 0.5.1

(continued from previous page)

return gdf

[7]: gds = df2gdf(ds)
gds.head()

[7]: y x PM2.5 geometry
station_id
659 50.529892 22.112467 7.12765 POINT (22.11247 50.52989)
736 54.380279 18.620274 4.66432 POINT (18.62027 54.38028)
861 54.167847 19.410942 3.00739 POINT (19.41094 54.16785)
266 51.259431 22.569133 7.10000 POINT (22.56913 51.25943)
355 51.856692 19.421231 2.00000 POINT (19.42123 51.85669)

[8]: gds.isna().any()

[8]: y False
x False
PM2.5 True
geometry False
dtype: bool

[9]: gds = gds.dropna(axis=0)

[10]: gds = gds.to_crs(epsg=2180)
gds.plot(figsize=(10, 10), column=DATASET, legend=True, markersize=20, alpha=0.7)
plt.title('PM2.5 concentrations in Poland')

[10]: Text(0.5, 1.0, 'PM2.5 concentrations in Poland')

46 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

2) Create the experimental semivariogram

If we recall the tutorial A.1.1 Semivariogram Estimation, there are three main parameters to set for the
build_experimental_variogram() function:

1. input_array: numpy array with coordinates and observed values, for example: [[0, 0, 10], [0, 1,
20]],

2. step_size: we must divide our analysis area into discrete lags. Lags are intervals (usually circular) within
which we check if the point has a neighbor. For example, if we look into the lag 500, then we are going to
compare one point with other points in a distance (0, 1000] from this point,

3. max_range: This parameter represents the possible maximum range of spatial dependency. This parameter
should be at most half of the extent.

2.3. Tutorials 47

Pyinterpolate, Release 0.5.1

But that’s not everything! We didn’t use three other parameters:

4. direction: it is a float in the range [0, 360]. We set the direction of the semivariogram:

• 0 or 180: is WE direction,

• 90 or 270 is NS direction,

• 45 or 225 is NE-SW direction,

• 135 or 315 is NW-SE direction.

5. tolerance: it is a float in the range [0, 1]. If we leave tolerance with default 1, we will always get an
isotropic semivariogram. Another edge case is if we set tolerance to 0, then points must be placed on a single
line with the beginning in the origin of the coordinate system and the angle given by the y-axis and direction
parameter. If tolerance is > 0 and < 1, the bin is selected as an elliptical area with a major axis pointed in the
same direction as the line for 0 tolerance.

• The major axis size is (tolerance * step_size),

• The minor axis size is ((1 - tolerance) * step_size),

• The baseline point is at the center of the ellipse.

6. method: it is str with possible values:

• t or triangle for triangular neighbors selection which is fast and recommended for a big dataset,

• e or ellipse for elliptical neighbors selection which is accurate but slow, recommended for small-size datasets.

The best idea is to visualize it on a cartesian plane:

• The top plane shows a unit circle that is the omnidirectional variogram (black circle). Within it, we see two
ellipses: one is bright green, and another is dark green.

• The bottom plane also shows a unit circle and two ellipses: the brighter yellow, and darker purple.

• The long arrows within both circles are radiuses of the omnidirectional variogram or the semi-major axis of
a directional ellipse. The step_size parameter controls its length. The short arrows are present only in the

48 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

directional variograms and are the semi-minor axes. The tolerance parameter controls their length, and it
is always:

• a fraction of step_size,

• 1, in this case, a semivariogram is omnidirectional,

• a value very close to 0 (but not 0) - an ellipse falls into the line.

• The good idea is to set tolerance to 0.5 and gradually make it smaller or larger (depending on the spatial
features).

We can start the analysis by understanding how our parameters affect the semivariogram bins range. We will set
tolerance to 0.2 in each case to better visualize the effects of a leading direction.

Case 1: W-E Direction

[11]: BIN_RADIUS = 60000 # meters
MAX_RANGE = 400000 # meters
TOLERANCE = 0.2

[12]: inp_arr = np.array(list(zip(gds['geometry'].x,
gds['geometry'].y,
gds[DATASET])))

[13]: we_variogram = build_experimental_variogram(
input_array=inp_arr,
step_size=BIN_RADIUS,
max_range=MAX_RANGE,
direction=0,
tolerance=TOLERANCE,
method='e'

)

we_variogram.plot(plot_semivariance=True)

2.3. Tutorials 49

Pyinterpolate, Release 0.5.1

Case 2: N-S Direction

[14]: ns_variogram = build_experimental_variogram(
input_array=inp_arr,
step_size=BIN_RADIUS,
max_range=MAX_RANGE,
direction=90,
tolerance=TOLERANCE,
method='e'

)

ns_variogram.plot(plot_semivariance=True)

50 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Case 3: NW-SE Direction

[15]: nw_se_variogram = build_experimental_variogram(
input_array=inp_arr,
step_size=BIN_RADIUS,
max_range=MAX_RANGE,
direction=135,
tolerance=TOLERANCE,
method='e'

)

nw_se_variogram.plot(plot_semivariance=True)

2.3. Tutorials 51

Pyinterpolate, Release 0.5.1

Case 4: NE-SW Direction

[16]: ne_sw_variogram = build_experimental_variogram(
input_array=inp_arr,
step_size=BIN_RADIUS,
max_range=MAX_RANGE,
direction=45,
tolerance=TOLERANCE,
method='e'

)

ne_sw_variogram.plot(plot_semivariance=True)

52 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Case 5: Isotropic Variogram

[17]: iso_variogram = build_experimental_variogram(
input_array=inp_arr,
step_size=BIN_RADIUS,
max_range=MAX_RANGE

)

iso_variogram.plot()

2.3. Tutorials 53

Pyinterpolate, Release 0.5.1

3) Compare semivariograms

We have created a set of variograms. What did we observe?

• The NE-SW variogram is very weak at describing a short-range variation (compare it to the map of air pollution
from the beginning of the tutorial. Points in this direction are relatively similar).

• The N-S variogram works well for a short range.

• The W-E variogram catches too much variability, and lags must be longer for this direction.

• The NW-SE variogram looks good and shows approximately linear variability change in a distance function. It
has the smallest variance from all variograms.

We can visualize and compare all variograms simultaneously, and we are sure that the y-axis is the same for every plot.

[18]: _lags = iso_variogram.lags
_ns = ns_variogram.experimental_semivariances
_we = we_variogram.experimental_semivariances
_nw_se = nw_se_variogram.experimental_semivariances
_ne_sw = ne_sw_variogram.experimental_semivariances
_iso = iso_variogram.experimental_semivariances

plt.figure(figsize=(20, 8))
plt.plot(_lags, _iso, color='black')
plt.plot(_lags, _ns, '--', color='#c2a5cf')
plt.plot(_lags, _we, '--', color='#e7d4e8')
plt.plot(_lags, _nw_se, '--', color='#5aae61')
plt.plot(_lags, _ne_sw, '--', color='#1b7837')
plt.title('Comparison of experimental semivariance models')
plt.legend(['Isotropic',

'NS',
(continues on next page)

54 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

'WE',
'NW-SE',
'NE-SW'])

plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

What do you think about this comparison? Do you agree that the NW-SE variogram best fits the data?

4) Bonus: Compare calculation times and results

Let’s compare calculation times and results from two methods of neighbors interpolation: t (triangular) and e (ellipti-
cal). We will follow data in the NW-SE direction.

[19]: from datetime import datetime

[20]: t0e = datetime.now()

Here elliptical

nw_se_variogram_elliptical = build_experimental_variogram(
input_array=inp_arr,
step_size=BIN_RADIUS,
max_range=MAX_RANGE,
direction=135,
tolerance=TOLERANCE,
method='e'

)

tfin_e = (datetime.now() - t0e).total_seconds()

[21]: t0t = datetime.now()

(continues on next page)

2.3. Tutorials 55

Pyinterpolate, Release 0.5.1

(continued from previous page)

Here triangular

nw_se_variogram_triangular = build_experimental_variogram(
input_array=inp_arr,
step_size=BIN_RADIUS,
max_range=MAX_RANGE,
direction=135,
tolerance=TOLERANCE,
method='t'

)

tfin_t = (datetime.now() - t0t).total_seconds()

[22]: msg = f'The triangular method is {tfin_e / tfin_t} times faster than the elliptical␣
→˓selection.'

print(msg)

The triangular method is 2.7558084695886036 times faster than the elliptical selection.

For this scenario, the triangular method is 1.5x faster than the elliptical selection. However, this difference will be more
significant with more points and point pairs, and triangular selection is 5x faster for big datasets.

Are variograms different? Let’s compare!

[23]: _lags = iso_variogram.lags
_nw_se_ell = nw_se_variogram_elliptical.experimental_semivariances
_nw_se_tri = nw_se_variogram_triangular.experimental_semivariances

plt.figure(figsize=(20, 8))
plt.plot(_lags, _nw_se_ell)
plt.plot(_lags, _nw_se_tri)
plt.title('Comparison of experimental semivariance models for NW-SE direction.')
plt.legend(['Elliptical selection', 'Triangular selection'])
plt.xlabel('Distance')
plt.ylabel('Semivariance')
plt.show()

56 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

The general shape is the same, but the variance of a semivariogram from a triangular selection is lower; it is harder to
distinguish the covariance between neighboring points and could be dangerously close to the nugget effect. You should
consider this (especially) in automatic calculations to avoid strange results or models that are not better than a simple
IDW technique.

But semivariogram for the elliptical selection can have different parameters than for the triangular selection. If you
choose a different step size and tolerance, the semivariogram’s shape may change and could better describe dissimilar-
ities.

Where to go from here?

• A.2.2 Variogram Point Cloud

• A.2.3 Experimental Variogram and Variogram Point Cloud Classes

• B.1.1 Ordinary and Simple Kriging

• B.3.1 Directional Ordinary Kriging

2.3. Tutorials 57

Pyinterpolate, Release 0.5.1

Changelog

Date Change description Author
2023-
08-21

The tutorial was refreshed and set along with the 0.5.0 version of the package @Simon-
Molinsky

2023-
04-15

Update: 0.4.1 @Simon-
Molinsky

2023-
03-04

Removed import for the download air quality dataset @Simon-
Molinsky

2022-
11-05

Tutorial updated for the 0.3.5 version of the package @Simon-
Molinsky

2022-
10-31

Bug update: wrong direction of angle from origin, it was clockwise but now it is counter-
clockwise

@Simon-
Molinsky

2022-
10-21

Bug update: wrong name of the N-S variogram @Simon-
Molinsky

2022-
10-17

Bug update: directions are calculated in a valid way. New feature: added comparison
between elliptical and triangular neighbors selection

@Simon-
Molinsky

2022-
09-22

The first version of tutorial @Simon-
Molinsky

[]:

A.2.2 Variogram Points Cloud

Table of Contents

1. Read point data,

2. Create variogram points cloud,

3. Detect and remove outliers.

4. Calculate the experimental semivariance from the points cloud.

Introduction

We will learn how to read and prepare data for semivariogram modeling, manually find the best step size between lags,
and detect outliers in our data.

Variogram Point Cloud analysis is an additional, essential data preparation step that may save you a lot of headaches
with more sophisticated analysis. You should learn about Variogram Point Cloud analysis before you move on to the
semivariogram estimation and semivariogram fitting operations.

We use:

• for points 1 and 2: DEM data stored in a file samples/point_data/txt/pl_dem_epsg2180.txt,

• for points 3 and 4: Breast cancer rates data is stored in the shapefile in folder samples/regularization/
cancer_data.gpkg.

58 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Import packages

[1]: import numpy as np

from pyinterpolate import Blocks, read_txt, calc_point_to_point_distance, VariogramCloud
from pyinterpolate.variogram.empirical.experimental_variogram import calculate_
→˓semivariance

1) Read point data

[2]: dem = read_txt('samples/point_data/txt/pl_dem_epsg2180.txt')

[4]: sample_size = int(0.05 * len(dem))
indices = np.random.choice(len(dem), sample_size, replace=False)
dem = dem[indices]

Look into a first few lines of data

dem[:3, :]

[4]: array([[2.51837397e+05, 5.45249474e+05, 2.11946869e+01],
[2.41974281e+05, 5.38958171e+05, 1.64789104e+01],
[2.45063630e+05, 5.43685759e+05, 1.90657024e+01]])

2) Set proper lag size with variogram cloud histogram

We will generate the Variogram Point Cloud. We calculate it for 16 lags and test different cloud variogram visualization
methods.

[5]: # Create analysis parameters

Check max distance between points
distances = calc_point_to_point_distance(dem[:, :-1])
maximum_range = np.max(distances) / 2

number_of_lags = 16
step_size = maximum_range / number_of_lags

vc = VariogramCloud(input_array=dem, step_size=step_size, max_range=maximum_range)

Check how many points are grouped for each lag:

[6]: for idx, _lag in enumerate(vc.lags):
print(f'Lag {_lag} has {vc.points_per_lag[idx]} point pairs.')

Lag 809.6271354731758 has 2 point pairs.
Lag 1619.2542709463517 has 4 point pairs.
Lag 2428.8814064195276 has 4 point pairs.
Lag 3238.5085418927033 has 12 point pairs.
Lag 4048.135677365879 has 8 point pairs.

(continues on next page)

2.3. Tutorials 59

Pyinterpolate, Release 0.5.1

(continued from previous page)

Lag 4857.762812839055 has 16 point pairs.
Lag 5667.389948312231 has 14 point pairs.
Lag 6477.017083785407 has 16 point pairs.
Lag 7286.644219258583 has 16 point pairs.
Lag 8096.271354731759 has 14 point pairs.
Lag 8905.898490204934 has 10 point pairs.
Lag 9715.52562567811 has 14 point pairs.
Lag 10525.152761151287 has 16 point pairs.
Lag 11334.779896624463 has 8 point pairs.
Lag 12144.407032097637 has 10 point pairs.

As we see, there are a lot of points per lag! Data is messy, but to be sure, we must check its distribution. What are
those points per lag? They are a set of semivariances between all point pairs within a specific lag. This information
helps us to understand if there are any undersampled ranges. Then, we can change step_size accordingly (to avoid a
situation where one lag has the order of magnitude less/more point pairs than the other).

We know the density of the points per lag. Now we can analyze semivariances distribution per lag. The
VariogramCloud class has three plot types we use for analysis:

1. Scatter plot. It shows the general dispersion of semivariances.

2. Box plot - an excellent tool for outliers detection. It shows dispersion and quartiles of semivariances per lag. We
can check distribution differences and their deviation from normality or skewness.

3. Violin plot. It is a box plot on steroids. We can read all information from the box plot and see kernel density
plots.

Let’s plot them all. The first is a scatter plot.

[8]: vc.plot('scatter');

The output per lag is dense, and distributions are hard to read. But, we can follow a general trend and see maxima on

60 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

the plot. We can make it better if we use a box plot instead:

[9]: vc.plot('box')

[9]: True

The orange line in the middle of each box represents the median (50%) value per lag. The trend is more visible if we
look into it. What else can be seen here?

1. Dispersion of values is greater with a distance, but at the same time, median and the 3rd quartile of semivariance
values are rising (3rd quartile is plotted as a horizontal line on a top of a box.

2. The maximum value rises with a distance (it is a horizontal line on a top of a whisker).

3. Data is skewed towards lower values of semivariance. Why? Because the median is closer to the bottom of a box
than the center or the top.

4. The 1st quartile (25% of the lowest values) is higher for distant lags.

We could stop our analysis here, but there is a better option to analyze data distribution than a box plot. We can use a
violin plot:

[10]: vc.plot('violin')

2.3. Tutorials 61

Pyinterpolate, Release 0.5.1

[10]: True

The violin plot supports our earlier assumptions, but we can learn more from it. For distant lags, a distribution starts
to be multimodal. We see one mode around very low semivariance values and another close to the 1st quartile. Multi-
modality may affect our outcomes, and it may tell us that there is more than one level of spatial dependency.

There is still the elephant in the room. Our data is pulled up with outliers. Do you see long whiskers on the top of
every distribution? Let them be, but the better idea is to clean it before we start Kriging. In the next paragraph, we will
detect and remove outliers from a block dataset.

3) Detect and remove outliers

With the idea of how the Variogram Point Cloud works, we can detect and “remove” outliers from our dataset. In this
part of the tutorial, we use another dataset. It represents the breast cancer rates in counties of the Northeastern part of
the U.S. Each county will be transformed into its centroid. Those centroids are not evenly spaced, and we expect the
dataset may be modeled incorrectly for several steps.

[11]: # Read and prepare data

DATASET = 'samples/regularization/cancer_data.gpkg'
POLYGON_LAYER = 'areas'
GEOMETRY_COL = 'geometry'
POLYGON_ID = 'FIPS'
POLYGON_VALUE = 'rate'
MAX_RANGE = 400000
STEP_SIZE = 40000

AREAL_INPUT = Blocks()
AREAL_INPUT.from_file(DATASET, value_col=POLYGON_VALUE, index_col=POLYGON_ID, layer_

(continues on next page)

62 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

→˓name=POLYGON_LAYER)

AREAL_INPUT.data.head()

ERROR 1: PROJ: proj_create_from_database: Open of /home/szymon/miniconda3/envs/
→˓pyinterpolate38/share/proj failed

[11]: FIPS geometry rate \
0 25019 MULTIPOLYGON (((2115688.816 556471.240, 211569... 192.2
1 36121 POLYGON ((1419423.430 564830.379, 1419729.721 ... 166.8
2 33001 MULTIPOLYGON (((1937530.728 779787.978, 193751... 157.4
3 25007 MULTIPOLYGON (((2074073.532 539159.504, 207411... 156.7
4 25001 MULTIPOLYGON (((2095343.207 637424.961, 209528... 155.3

centroid_x centroid_y
0 2.132630e+06 557971.155949
1 1.442153e+06 550673.935704
2 1.958207e+06 766008.383446
3 2.082188e+06 556830.822367
4 2.100747e+06 600235.845891

[12]: areal_centroids = AREAL_INPUT.data[[AREAL_INPUT.cx, AREAL_INPUT.cy, AREAL_INPUT.value_
→˓column_name]].values

[13]: # Create analysis parameters

Check max distance between points

distances = calc_point_to_point_distance(areal_centroids[:, :-1])
maximum_range = np.max(distances) / 2

number_of_lags = 8
step_size = maximum_range / number_of_lags

vc = VariogramCloud(input_array=areal_centroids, step_size=step_size, max_range=maximum_
→˓range)

[14]: vc.plot('violin')

2.3. Tutorials 63

Pyinterpolate, Release 0.5.1

[14]: True

[15]: for idx, _lag in enumerate(vc.lags):
print(f'Lag {_lag} has {vc.points_per_lag[idx]} point pairs.')

Lag 75303.56650292415 has 1936 point pairs.
Lag 150607.1330058483 has 4740 point pairs.
Lag 225910.69950877246 has 6532 point pairs.
Lag 301214.2660116966 has 7254 point pairs.
Lag 376517.83251462074 has 7066 point pairs.
Lag 451821.39901754487 has 5904 point pairs.
Lag 527124.9655204691 has 4494 point pairs.

Our data is skewed towards large values. Thus, we will remove outliers from the upper part of the dataset. We will use
the interquartile range algorithm. It detects outliers as all points below the first quartile of a data plus m (positive or zero
float) standard deviations and all points above the 3rd quartile plus n (positive or zero float) standard deviations.
The important thing is that the absolute values of m and n can differ. We should fit those values to the distribution and
its skewness.

The class VariogramCloud has the internal method .remove_outliers(). With the parameter inplace set to True,
we can overwrite the variogram point cloud, but if we set it to False, it will return a new VariogramCloud object
with a cleaned variogram point cloud. Other parameters:

• method: is a string that removes outliers. We have two methods, one based on z-scores and the interquartile
range method. Both have upper and lower bounds. The Z-score method is invoked with method='zscore',
and arguments for this function are z_lower_limit and z_upper_limit (number of standard deviations from
the mean down and up, or negative and positive).

• iqr_lower_limit: how many standard deviations should be subtracted from the first quartile to set a limit of
valid values,

• iqr_upper_limit: how many standard deviations should be added to the 3rd quartile to set a limit of valid

64 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

values.

The values we will get will be within limits:

𝑞1− (𝑚 * 𝑠𝑡𝑑) < 𝑉 < 𝑞3 + (𝑛 * 𝑠𝑡𝑑),

Where: * 𝑞1: 1st quartile, * 𝑞3: 3rd quartile, * 𝑠𝑡𝑑: standard deviation, * 𝑚: real value greater than 0, * 𝑛: real value
greater than 0, * 𝑉 : the cleaned array.

[16]: cvc = vc.remove_outliers(method='iqr', iqr_lower_limit=3, iqr_upper_limit=2,␣
→˓inplace=False)

[17]: cvc.plot('violin')

[17]: True

When we compare both figures - before and after data cleaning - we see that the y-axis of the second plot is 6-7 times
smaller than the y-axis of the first plot! We’ve cleaned our data from the extreme values.

4) Calculate experimental semivariogram from point cloud

The last but not least property of the experimental variogram point cloud is that we may calculate the semivariogram
directly from it. The method for it is .calculate_experimental_variogram(). Let’s compare outputs from two
algorithms.

[18]: exp_variogram_from_points = calculate_semivariance(areal_centroids, step_size=step_size,␣
→˓max_range=maximum_range)
exp_variogram_from_p_cloud = vc.calculate_experimental_variogram()

2.3. Tutorials 65

Pyinterpolate, Release 0.5.1

[19]: np.array_equal(exp_variogram_from_points, exp_variogram_from_p_cloud)

[19]: True

Both semivariograms are the same, but methods to obtain these were different.

Where to go from here?

• A.2.3 Experimental Variogram and Variogram Point Cloud Classes

• B.1.1 Ordinary and Simple Kriging

• B.1.3 Outliers and Kriging Model

• B.2.1 Directional Ordinary Kriging

66 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Changelog

Date Change description Author
2023-
08-
21

The tutorial was refreshed and set along with the 0.5.0 version of the package @SimonMolin-
sky

2023-
02-
01

Tutorial updated for the version 0.3.7 of the package @SimonMolin-
sky

2022-
11-
05

Tutorial updated for the 0.3.5 version of the package @SimonMolin-
sky

2022-
10-
21

Updated to the version 0.3.4 @SimonMolin-
sky

2022-
10-
17

Corrected data selection, now tutorial will run faster @SimonMolin-
sky

2022-
08-
17

Updated to the version 0.3.0 @SimonMolin-
sky

2021-
12-
13

Changed behavior of select_values_in_range() function @SimonMolin-
sky

2021-
10-
13

Refactored TheoreticalSemivariogram (name change of class attribute) and refac-
tored calc_semivariance_from_pt_cloud() function to protect calculations from
NaN's.

@ethmtrgt &
@SimonMolin-
sky

2021-
08-
22

Refactored the Outlier Removal algorithm - quantile based algorithm @SimonMolin-
sky

2021-
08-
10

Refactored the Outlier Removal algorithm @SimonMolin-
sky

2021-
05-
11

Refactored TheoreticalSemivariogram class @SimonMolin-
sky

2021-
03-
31

Update related to the change of semivariogram weighting. Updated cancer rates data. @SimonMolin-
sky

[]:

2.3. Tutorials 67

Pyinterpolate, Release 0.5.1

Experimental Variogram and Variogram Cloud classes

Table of Contents:

1. Create Experimental Variogram with the ExperimentalVariogram class.

2. Create Experimental Variogram Point Cloud with the VariogramCloud class.

Introduction

The geostatistical analysis starts with a dissimilarity estimation. We must know if a process is spatially dependent and
at which distance points tend to be related to each other. Thus, we start with the experimental variogram estimation. In
this tutorial, we will look closely into the API and learn what can be done with two basic experimental semivariogram
estimation functionalities. One is the ExperimentalVariogram class, and another is the VariogramCloud class.
The first is a foundation of every other complex function, from semivariogram modeling to Poisson Kriging. The latter
is used to analyze relations between points and their dispersion.

We will use DEM data stored in a file samples/point_data/txt/pl_dem_epsg2180.txt

Import packages & read data

[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pyinterpolate import read_txt, ExperimentalVariogram, VariogramCloud

[2]: dem = read_txt('samples/point_data/txt/pl_dem_epsg2180.txt')

Take a sample
sample_size = int(0.05 * len(dem))
indices = np.random.choice(len(dem), sample_size, replace=False)
dem = dem[indices]

Look into a first few lines of data
dem[:10, :]

[2]: array([[2.39250338e+05, 5.48631524e+05, 8.84804077e+01],
[2.41201861e+05, 5.49103756e+05, 7.72773132e+01],
[2.50945606e+05, 5.48731991e+05, 8.15302811e+01],
[2.50384028e+05, 5.36743412e+05, 3.87784348e+01],
[2.53739451e+05, 5.44230034e+05, 2.12480278e+01],
[2.42744089e+05, 5.29666893e+05, 5.23056946e+01],
[2.38056136e+05, 5.34391921e+05, 2.95818558e+01],
[2.45023500e+05, 5.51069770e+05, 3.36740112e+01],
[2.44771460e+05, 5.32997525e+05, 4.72923431e+01],
[2.53090205e+05, 5.48829925e+05, 8.16635361e+01]])

68 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

1. Experimental Variogram class

Let’s start from the ExperimentalVariogram class.

class ExperimentalVariogram:

def __init__(self,
input_array,
step_size,
max_range,
weights=None,
direction=None,
tolerance=1.0,
method='t',
is_semivariance=True,
is_covariance=True):

...

The class has three required parameters and seven optional.

• input_array is a list of coordinates and values in the form (x, y, value). Those are our observations.

• step_size parameter, which describes the distance between lags.

• max_range, which describes the maximum range of analysis.

What do we know at the beginning? Our coordinate reference system is metric. It is EPSG:2180. We don’t know the
limits of the region of interest to set the max_range parameter. We must define our area size:

[3]: # Get max distances for a region

minx = np.min(dem[:, 0])
maxx = np.max(dem[:, 0])

miny = np.min(dem[:, 1])
maxy = np.max(dem[:, 1])

x_max_distance = maxx - minx
y_max_distance = maxy - miny

print('Max lon distance:', x_max_distance)
print('Max lat distance:', y_max_distance)

Max lon distance: 17926.58479234294
Max lat distance: 25125.91187161021

We can assume that the maximum distance max_range parameter shouldn’t be larger than the maximum distance in
a lower dimension (~18000 m). In reality, the max_range parameter is relatively close to the halved value of this
distance, and we can check it on a variogram.

But we don’t know the step_size parameter. . . Let’s assume it is 100 meters, and we will see if we’ve estimated it
correctly.

[4]: max_range = 18000
step_size = 100

(continues on next page)

2.3. Tutorials 69

https://epsg.io/2180

Pyinterpolate, Release 0.5.1

(continued from previous page)

experimental_variogram = ExperimentalVariogram(
input_array=dem,
step_size=step_size,
max_range=max_range

)

We will visually inspect semivariogram with the .plot() method of ExperimentalVariogram class:

[10]: experimental_variogram.plot(plot_covariance=False, plot_variance=False)

Variogram looks nice. We can see a trend, but points are oscillating around it. This piece of information tells us that
step_size should be larger.

What with the max_range? It is a tricky problem because the semivariogram seems right up to the end of its range.
The idea is to set the maximum range around half of the study extent because the number of point pairs will fall from
this distance.

We can check how many point pairs we have for each distance to make a better deci-
sion. The ExperimentalVariogram class stores information about points within its attribute .
experimental_semivariance_array. It is a numpy array with three columns: [lag, semivariance,
number of point pairs], and we will use the last column to decide where to cut max_range.

[7]: _ds = experimental_variogram.experimental_semivariance_array
plt.figure()
plt.scatter(x=_ds[:, 0], y=_ds[:, -1])
plt.show()

70 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Around the twelve-kilometer number of point pairs rapidly falls, so we can set max_range to some value between 7.5
and 12.5 kilometers, we will choose 10000 kilometers as our max_range.

[11]: max_range = 10_000
step_size = 250

experimental_variogram = ExperimentalVariogram(
input_array=dem,
step_size=step_size,
max_range=max_range

)

experimental_variogram.plot(plot_covariance=False, plot_variance=False)

2.3. Tutorials 71

Pyinterpolate, Release 0.5.1

This time variogram looks cleaner. However, it still has oscillating readings. Let’s set step_size to 500 meters:

[12]: step_size = 500

experimental_variogram = ExperimentalVariogram(
input_array=dem,
step_size=step_size,
max_range=max_range

)

experimental_variogram.plot(plot_covariance=False, plot_variance=False)

72 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

We can use those parameters! Next, we will look into the is_covariance parameter of the ExperimentalVariogram
class. It is set to True by default. If we want to know the covariance of a dataset, then we should set the is_covariance
parameter to True. Covariance is a measure of spatial similarity, opposite to semivariance. You will see in the plot
that they mirror each other. But we can use it in kriging systems instead of semivariance.

ExperimentalVariogram plotting function .plot() has additional parameters:

• plot_semivariance (boolean, set to True by default),

• plot_covariance (boolean, set to True by default),

• plot_variance (boolean, set to True by default).

We will plot all of those objects in a single figure.

[13]: experimental_variogram.plot()

Two important things that we can read from this plot:

1. Experimental covariance is a mirrored version of experimental semivariance, and we can use it to solve the
Kriging system instead of semivariance. It is a measure of similarity between point pairs. The highest similarity
can be noticed on the first lags and decreases with a rising distance.

2. Variance calculated from data is used later as the sill in kriging models, and it can be used to transform semi-
variances into covariances.

This plot summarizes the basic steps we can do with the ExperimentalVariogram class. We left many parameters
untouched, but only for a moment. Now we are going to explore all capabilities of the class.

2.3. Tutorials 73

Pyinterpolate, Release 0.5.1

Optional parameter: weights

We won’t use this parameter in our tutorial, but we should learn where it comes from. It is a part of Poisson Krig-
ing operations. Poisson Kriging algorithms use weights to weight the semivariance between blocks by in-block
population.

Optional parameters: direction, tolerance, method

Those three parameters are used to define a directional variogram. We will check how the variogram behaves in the
Weast-East axis (0 degrees).

[14]: direction = 0
tolerance = 0.1
method = 'e'

experimental_variogram = ExperimentalVariogram(
input_array=dem,
step_size=step_size,
max_range=max_range,
direction=direction,
tolerance=tolerance,
method=method

)

experimental_variogram.plot()

Let’s look into the North-South axis too:

[15]: direction = 90

(continues on next page)

74 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

experimental_variogram = ExperimentalVariogram(
input_array=dem,
step_size=step_size,
max_range=max_range,
direction=direction,
tolerance=tolerance,
method=method

)

experimental_variogram.plot()

What can we learn from those plots? Variability along the W-E axis is lower than along the N-S axis. It may indicate
continuous spatial structures along the W-E axis (for example, a river plain).

At this point, we are ready for modeling. However, if we want to be precise, we should look into outliers and analyze
VariogramCloud.

A classic variogram analysis tells us almost everything about spatial dependencies and dissimilarities in data. But there
are more spatial investigation tools. We need to learn about the distribution of variances within a single lag, which is
valuable information. Semivariogram shows us averaged semivariances. If we want to dig deeper, we should use the
VariogramCloud class and plot. . . the variogram cloud.

The VariogramCloud class definition API is:

class VariogramCloud:

def __init__(self,
input_array,
step_size,
max_range,
direction=0,
tolerance=1,
calculate_on_creation=True):

(continues on next page)

2.3. Tutorials 75

Pyinterpolate, Release 0.5.1

(continued from previous page)

pass

We pass the same parameters to the class as for the ExperimentalVariogram class, and the only difference is the
calculate_on_creation boolean value. Variogram point cloud calculation is a slow operation, and that’s why we
can start it during or after the class initialization. If we set calculate_on_creation to False, we must run the
.calculate_experimental_variogram() method later.

VariogramCloud has more methods than ExperimentalVariogram:

• calculate_experimental_variogram() to obtain the variogram (similar to the output from the
ExperimentalVariogram class,

• describe() to get lag statistics,

• plot() to plot variogram cloud,

• remove_outliers() to clean the variogram.

We will start with calculation and plotting variogram cloud.

[16]: variogram_cloud = VariogramCloud(
input_array=dem,
step_size=step_size,
max_range=max_range

)

We can plot three different kinds of distribution plots: 'scatter', 'box', 'violin'. We will choose box because
it clearly shows data distribution in contrast to scatter and it’s easier to interpret than violin plot.

[17]: variogram_cloud.plot(kind='box')

[17]: True

76 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

The general shape is similar to the shape of the experimental variogram. We can see that semivariances between point
pairs contain outliers, especially for the lags close to our maximum range. To be sure about outliers’ existence, let’s
look into a more complex violin plot:

[18]: variogram_cloud.plot(kind='violin')

[18]: True

Extreme outliers are more visible. Another thing is the difference between the mean and median. Distribution is highly
skewed toward large values. If graphical representation is not enough, we may describe statistics with the method
.describe():

[19]: variogram_cloud.describe()

[19]: {500: {'count': 234,
'avg semivariance': 15.48837895423851,
'std': 129.30689361933185,
'min': 0.0,
'max': 1143.5633926376795,
'25%': 0.3451266676565865,
'median': 1.3447192054627521,
'75%': 13.65846407461504,
'skewness': 6.865653366086163,
'kurtosis': 50.79024671616988,
'lag': 500},

1000: {'count': 606,
'avg semivariance': 25.151443803715708,
'std': 130.72724691457688,
'min': 1.3315911928657442e-06,
'max': 1077.959058797118,
'25%': 0.7740007161801259,

(continues on next page)

2.3. Tutorials 77

Pyinterpolate, Release 0.5.1

(continued from previous page)

'median': 5.823250695397292,
'75%': 31.42736609817075,
'skewness': 4.567298658957882,
'kurtosis': 24.214435519746083,
'lag': 1000},

1500: {'count': 1008,
'avg semivariance': 57.835574935521514,
'std': 331.73215147893416,
'min': 7.597882358822972e-05,
'max': 3046.333026852517,
'25%': 0.968566885097971,
'median': 7.822932168508487,
'75%': 64.66452046956692,
'skewness': 5.608396965535479,
'kurtosis': 37.38797721538239,
'lag': 1500},

2000: {'count': 1348,
'avg semivariance': 79.75218552208693,
'std': 428.8461018481998,
'min': 3.025872865691781e-05,
'max': 3796.9629175248883,
'25%': 1.2690777453244664,
'median': 18.391886290972252,
'75%': 109.60415145155275,
'skewness': 4.869674455730696,
'kurtosis': 27.620361886790118,
'lag': 2000},

2500: {'count': 1698,
'avg semivariance': 145.95094727929936,
'std': 805.2460216899517,
'min': 4.243338480591774e-08,
'max': 5699.690698992359,
'25%': 1.7351306386444776,
'median': 22.872865243130946,
'75%': 162.32509036679767,
'skewness': 4.209560111010213,
'kurtosis': 18.750587407226615,
'lag': 2500},

3000: {'count': 1992,
'avg semivariance': 199.33218908929288,
'std': 911.2555224174007,
'min': 1.0608346201479435e-08,
'max': 5720.016503487772,
'25%': 2.4267591861680557,
'median': 32.15229412448389,
'75%': 249.17055305647318,
'skewness': 3.2787661143480946,
'kurtosis': 11.293592711474577,
'lag': 3000},

3500: {'count': 2154,
'avg semivariance': 209.00387222055934,
'std': 913.5411306035585,

(continues on next page)

78 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

'min': 6.0737496824003756e-05,
'max': 5516.191060331708,
'25%': 2.9810246527231357,
'median': 48.88620506064035,
'75%': 306.07525457920565,
'skewness': 3.132272141037236,
'kurtosis': 9.972795491912944,
'lag': 3500},

4000: {'count': 2572,
'avg semivariance': 268.3259773207153,
'std': 1056.4261950767657,
'min': 2.6099187380168587e-06,
'max': 5514.402312608567,
'25%': 2.6644885819441697,
'median': 61.834192301528674,
'75%': 381.5180078523699,
'skewness': 2.473310799225225,
'kurtosis': 5.473415218908773,
'lag': 4000},

4500: {'count': 2832,
'avg semivariance': 307.6134533281816,
'std': 1113.7493026553932,
'min': 4.211964551359415e-06,
'max': 5829.092762578512,
'25%': 5.008626806946268,
'median': 82.54248778484907,
'75%': 606.8352795074716,
'skewness': 2.3016213999312303,
'kurtosis': 4.838611890454055,
'lag': 4500},

5000: {'count': 2924,
'avg semivariance': 341.33197977216213,
'std': 1184.6820756378802,
'min': 7.017538882791996e-05,
'max': 5967.1652707402245,
'25%': 6.364002417831216,
'median': 105.43215119686101,
'75%': 714.8062540315768,
'skewness': 2.217432052486689,
'kurtosis': 4.458010177884344,
'lag': 5000},

5500: {'count': 3192,
'avg semivariance': 397.7678526465361,
'std': 1310.190495093556,
'min': 3.9138831198215485e-07,
'max': 7494.872101836896,
'25%': 7.306133981550374,
'median': 117.5330814906647,
'75%': 973.5924935907096,
'skewness': 2.048285104289412,
'kurtosis': 3.80948479120119,
'lag': 5500},

(continues on next page)

2.3. Tutorials 79

Pyinterpolate, Release 0.5.1

(continued from previous page)

6000: {'count': 3188,
'avg semivariance': 441.4588322976255,
'std': 1341.9100279445179,
'min': 4.899957275483757e-07,
'max': 6701.4388024286745,
'25%': 9.152769157113653,
'median': 191.89130915285932,
'75%': 1115.490027037231,
'skewness': 1.8576607961887481,
'kurtosis': 2.8155666464376194,
'lag': 6000},

6500: {'count': 3480,
'avg semivariance': 457.2660981146536,
'std': 1364.1466464135244,
'min': 6.846037285868078e-05,
'max': 7663.801433086061,
'25%': 10.418562886014115,
'median': 204.0729240650271,
'75%': 1193.259201243348,
'skewness': 1.8383466986007484,
'kurtosis': 3.1069471071828714,
'lag': 6500},

7000: {'count': 3662,
'avg semivariance': 467.70408815019107,
'std': 1383.7114275988758,
'min': 2.620747545734048e-05,
'max': 7732.3306628377795,
'25%': 12.876975894745556,
'median': 302.43025554287306,
'75%': 1214.8304466051668,
'skewness': 1.9378885777226609,
'kurtosis': 3.5563617512199306,
'lag': 7000},

7500: {'count': 3634,
'avg semivariance': 516.9270183174606,
'std': 1389.344310228298,
'min': 1.1408701539039612e-06,
'max': 7813.73612767295,
'25%': 18.949909821152687,
'median': 359.12963762053187,
'75%': 1490.0087687096093,
'skewness': 1.554949463509357,
'kurtosis': 1.7478735159246037,
'lag': 7500},

8000: {'count': 3896,
'avg semivariance': 541.1530674487567,
'std': 1428.070471120106,
'min': 0.00011741125854314305,
'max': 7973.467257830838,
'25%': 19.034676041905186,
'median': 433.6325574710372,
'75%': 1563.9827408457786,

(continues on next page)

80 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

'skewness': 1.528514122993604,
'kurtosis': 1.7506732493933423,
'lag': 8000},

8500: {'count': 3858,
'avg semivariance': 547.5056312500515,
'std': 1468.6396045259646,
'min': 1.7320417100563645e-06,
'max': 7673.916123840958,
'25%': 23.704184239628376,
'median': 448.1990261501778,
'75%': 1405.225225292179,
'skewness': 1.5977571608298324,
'kurtosis': 1.8190966680505722,
'lag': 8500},

9000: {'count': 3948,
'avg semivariance': 570.1379938012599,
'std': 1447.8532805956781,
'min': 3.0405793950194493e-05,
'max': 6551.827118135992,
'25%': 37.25730361373644,
'median': 532.4391559513406,
'75%': 1588.2390081191297,
'skewness': 1.4628469824631245,
'kurtosis': 1.232784763520586,
'lag': 9000},

9500: {'count': 3730,
'avg semivariance': 585.3034449746383,
'std': 1511.2436330394091,
'min': 0.00023756933296681382,
'max': 7855.885675042067,
'25%': 39.582661400436336,
'median': 571.2002264822368,
'75%': 1571.7003516764962,
'skewness': 1.5794687444921045,
'kurtosis': 1.8317167345076042,
'lag': 9500}}

We get Python’s dict as an output, but it is not especially readable; let’s convert it to a DataFrame:

[20]: desc = pd.DataFrame(variogram_cloud.describe())

[21]: desc

[21]: 500 1000 1500 2000 \
count 234.000000 606.000000 1008.000000 1348.000000
avg semivariance 15.488379 25.151444 57.835575 79.752186
std 129.306894 130.727247 331.732151 428.846102
min 0.000000 0.000001 0.000076 0.000030
max 1143.563393 1077.959059 3046.333027 3796.962918
25% 0.345127 0.774001 0.968567 1.269078
median 1.344719 5.823251 7.822932 18.391886
75% 13.658464 31.427366 64.664520 109.604151

(continues on next page)

2.3. Tutorials 81

Pyinterpolate, Release 0.5.1

(continued from previous page)

skewness 6.865653 4.567299 5.608397 4.869674
kurtosis 50.790247 24.214436 37.387977 27.620362
lag 500.000000 1000.000000 1500.000000 2000.000000

2500 3000 3500 4000 \
count 1.698000e+03 1.992000e+03 2154.000000 2572.000000
avg semivariance 1.459509e+02 1.993322e+02 209.003872 268.325977
std 8.052460e+02 9.112555e+02 913.541131 1056.426195
min 4.243338e-08 1.060835e-08 0.000061 0.000003
max 5.699691e+03 5.720017e+03 5516.191060 5514.402313
25% 1.735131e+00 2.426759e+00 2.981025 2.664489
median 2.287287e+01 3.215229e+01 48.886205 61.834192
75% 1.623251e+02 2.491706e+02 306.075255 381.518008
skewness 4.209560e+00 3.278766e+00 3.132272 2.473311
kurtosis 1.875059e+01 1.129359e+01 9.972795 5.473415
lag 2.500000e+03 3.000000e+03 3500.000000 4000.000000

4500 5000 5500 6000 \
count 2832.000000 2924.000000 3.192000e+03 3.188000e+03
avg semivariance 307.613453 341.331980 3.977679e+02 4.414588e+02
std 1113.749303 1184.682076 1.310190e+03 1.341910e+03
min 0.000004 0.000070 3.913883e-07 4.899957e-07
max 5829.092763 5967.165271 7.494872e+03 6.701439e+03
25% 5.008627 6.364002 7.306134e+00 9.152769e+00
median 82.542488 105.432151 1.175331e+02 1.918913e+02
75% 606.835280 714.806254 9.735925e+02 1.115490e+03
skewness 2.301621 2.217432 2.048285e+00 1.857661e+00
kurtosis 4.838612 4.458010 3.809485e+00 2.815567e+00
lag 4500.000000 5000.000000 5.500000e+03 6.000000e+03

6500 7000 7500 8000 \
count 3480.000000 3662.000000 3634.000000 3896.000000
avg semivariance 457.266098 467.704088 516.927018 541.153067
std 1364.146646 1383.711428 1389.344310 1428.070471
min 0.000068 0.000026 0.000001 0.000117
max 7663.801433 7732.330663 7813.736128 7973.467258
25% 10.418563 12.876976 18.949910 19.034676
median 204.072924 302.430256 359.129638 433.632557
75% 1193.259201 1214.830447 1490.008769 1563.982741
skewness 1.838347 1.937889 1.554949 1.528514
kurtosis 3.106947 3.556362 1.747874 1.750673
lag 6500.000000 7000.000000 7500.000000 8000.000000

8500 9000 9500
count 3858.000000 3948.000000 3730.000000
avg semivariance 547.505631 570.137994 585.303445
std 1468.639605 1447.853281 1511.243633
min 0.000002 0.000030 0.000238
max 7673.916124 6551.827118 7855.885675
25% 23.704184 37.257304 39.582661
median 448.199026 532.439156 571.200226
75% 1405.225225 1588.239008 1571.700352

(continues on next page)

82 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

skewness 1.597757 1.462847 1.579469
kurtosis 1.819097 1.232785 1.831717
lag 8500.000000 9000.000000 9500.000000

With this detailed table, we can analyze the variogram in detail and decide: - if lags are correctly placed, - if there are
enough points per lag, - if the maximum range is too low or too high, - is distribution close to normal,

And based on the answers to those questions, we can change semivariogram parameters slightly.

The interesting row is avg semivariance. Let’s plot it against lags, and let’s plot the output from
ExperimentalVariogram in the same figure:

[22]: # Re-calculate experimental variogram

max_range = 10000
step_size = 500

experimental_variogram = ExperimentalVariogram(
input_array=dem,
step_size=step_size,
max_range=max_range

)

[23]: # Plot

plt.figure()
plt.plot(experimental_variogram.experimental_semivariance_array[:, 0],

experimental_variogram.experimental_semivariance_array[:, 1])
plt.plot(desc.loc['avg semivariance'])
plt.legend(['ExperimentalVariogram output', 'Average semivariance from VariogramCloud'])
plt.show()

2.3. Tutorials 83

Pyinterpolate, Release 0.5.1

The result is the same, and it shouldn’t be a surprise. The experimental variogram averages all semivariances per lag.
We stepped back in computations and focused on all point pairs within a lag.

There is one last method within the VariogramCloud class: .remove_outliers(). It cleans our variogram from
anomalous readings. The cleaning default algorithm uses the z-score, but we can also use the interquartile range
analysis. Both methods cut outliers from the largest or the lowest intervals. For data that deviates greately from normal
distribution, it is better to use an inter-quartile range for cleaning:

[24]: new_variogram_cloud = variogram_cloud.remove_outliers(method='iqr', iqr_lower_limit=3,␣
→˓iqr_upper_limit=2)

Now we can check what has happend with the variogram:

[25]: new_variogram_cloud.plot(kind='violin')

84 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

[25]: True

Maximum semivariances are much lower than before. How does look the averaged semivariogram? Now we will
use the .calculate_experimental_variogram() method to calculate the variogram directly and compare it to the
experimental variogram retrieved from the ExperimentalVariogram class.

[26]: # Plot
exp_var_from_point_cloud = new_variogram_cloud.calculate_experimental_variogram()

plt.figure()
plt.plot(experimental_variogram.experimental_semivariance_array[:, 0],

experimental_variogram.experimental_semivariance_array[:, 1])
plt.plot(exp_var_from_point_cloud[:, 0],

exp_var_from_point_cloud[:, 1])
plt.legend(['ExperimentalVariogram output', 'Average semivariance from VariogramCloud'])
plt.show()

2.3. Tutorials 85

Pyinterpolate, Release 0.5.1

Now we see that the shape of the variogram persisted, but maximum values per lag are lower. It could be helpful for
some models, especially if we eliminate outliers with extreme values.

Summary

After all those steps, you have better insights into the ExperimentalVariogram and VariogramCloud classes. You
may check your dataset and compare results to those in the tutorial.

The main takeaways from this tutorial are:

• API of ExperimentalVariogram and VariogramCloud classes,

• differences and similarities between ExperimentalVariogram and VariogramCloud classes,

• full variogram analysis and preparation before spatial interpolation.

86 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Where to go from here?

• B.1.1 Ordinary and Simple Kriging

• B.3.1 Directional Ordinary Kriging

• C.1.1 Outliers and Kriging Model

Changelog

Date Change description Author
2023-08-22 The tutorial was refreshed and set along with the 0.5.0 version of the package @SimonMolinsky
2023-01-23 The first release of the tutorial @SimonMolinsky

[]:

2.3.2 Intermediate

B.1.1 Ordinary and Simple Kriging

Table of Contents:

1. Read point data,

2. Set semivariogram model,

3. Set Ordinary Kriging and Simple Kriging models,

4. Predict values at unknown locations.

Introduction

This tutorial will teach us how to perform spatial interpolation with Ordinary and Simple Kriging. We will compare a
different number of ranges, and test outcomes of processing with the root mean squared error.

Ordinary and Simple Kriging is the simplest form of Kriging, but they’re still powerful techniques.

We use DEM data which is stored in a file samples/point_data/txt/pl_dem_epsg2180.txt.

Import packages

[1]: from typing import List

import numpy as np

from pyinterpolate import read_txt, build_experimental_variogram, build_theoretical_
→˓variogram, kriging

2.3. Tutorials 87

Pyinterpolate, Release 0.5.1

1) Read point data

[2]: dem = read_txt('samples/point_data/txt/pl_dem_epsg2180.txt')
dem[: 3]

[2]: array([[2.37685325e+05, 5.45416708e+05, 5.12545509e+01],
[2.37674140e+05, 5.45209671e+05, 4.89582825e+01],
[2.37449255e+05, 5.41045935e+05, 1.68178635e+01]])

In the beginning, we remove 70 % of our points from the dataset, and we will leave them as a test set to estimate how
good our models are.

[3]: def create_train_test(dataset: np.ndarray, training_set_ratio=0.3):
"""
Function divides base dataset into a training and a test set.

Parameters

dataset : np.ndarray

training_set_ratio : float, default = 0.3

Returns

training_set, test_set : List[np.ndarray]
"""

np.random.seed(101) # To ensure that we will get the same results every time

indexes_of_training_set = np.random.choice(range(len(dataset) - 1), int(training_set_
→˓ratio * len(dataset)), replace=False)

training_set = dataset[indexes_of_training_set]
validation_set = np.delete(dataset, indexes_of_training_set, 0)
return training_set, validation_set

train_set, test_set = create_train_test(dem)

We have removed a subset of points from a dataset to be sure that Kriging is working. In this scenario, 70% of available
points are removed, but in real-world cases, you will probably have even fewer points to perform estimations, down to
the 1% of known values.

Function create_train_test() divides our dataset into two subsets:

• training set used for semivariogram model derivation,

• test set used for the model error calculation.

Points for each set are chosen randomly to avoid bias related to the geographical location. Let’s imagine we have a
sorted list of Digital Elevation Model points. The western part of our measurements covers a mountain, and the eastern
part is plain. When we use the part of the west for modeling and the east part for tests, we are going directly into a
catastrophe! That’s why performing multiple random sampling and testing various realizations from our data is better.
We will prepare only one realization with a fixed random seed, but you should be aware that in the real-world analysis,
we must test more realizations (e.g., set multiple random seeds).

88 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

2) Set Semivariogram model

In this step, we are going to create experimental and theoretical semivariograms.

[4]: # Prepare experimental semivariogram

step_radius = 500 # meters
max_range = 10000 # meters

exp_semivar = build_experimental_variogram(input_array=train_set, step_size=step_radius,␣
→˓max_range=max_range)

[5]: # Plot experimental semivariogram

exp_semivar.plot()

[7]: # Fit data into a theoretical model

semivar = build_theoretical_variogram(experimental_variogram=exp_semivar,
model_name='linear',
sill=exp_semivar.variance,
rang=max_range)

[8]: semivar.plot()

2.3. Tutorials 89

Pyinterpolate, Release 0.5.1

[9]: print(semivar)

* Selected model: Linear model
* Nugget: 0.0
* Sill: 493.778772754868
* Range: 10000
* Spatial Dependency Strength is Unknown
* Mean Bias: 21.92700357030904
* Mean RMSE: 37.17324824914244
* Error-lag weighting method: None

+--------+--------------------+--------------------+---------------------+
| lag | theoretical | experimental | bias (y-y') |
+--------+--------------------+--------------------+---------------------+
500.0	24.6889386377434	15.614084077885668	-9.074854559857734
1000.0	49.3778772754868	34.151521896711735	-15.226355378775068
1500.0	74.0668159132302	56.61060460335831	-17.45621130987189
2000.0	98.7557545509736	81.75250857008155	-17.00324598089206
2500.0	123.444693188717	107.39147411240353	-16.053219076313468
3000.0	148.1336318264604	138.01527174633642	-10.118360080123978
3500.0	172.82257046420378	170.17760461535644	-2.6449658488473347
4000.0	197.5115091019472	201.7643955690108	4.2528864670635755
4500.0	222.2004477396906	235.6737606045218	13.4733128648312
5000.0	246.889386377434	274.49115425599933	27.60176787856534
5500.0	271.5783250151774	304.81328096735956	33.23495595218213
6000.0	296.2672636529208	341.13970843945583	44.87244478653503
6500.0	320.9562022906642	367.8150566677254	46.85885437706122
7000.0	345.64514092840756	403.5663320998641	57.92119117145654
7500.0	370.334079566151	430.51175648403176	60.177676917880774
8000.0	395.0230182038944	456.5353159209564	61.51229771706198

(continues on next page)

90 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

8500.0	419.7119568416378	472.6792052919712	52.967248450333386
9000.0	444.4008954793812	496.87388696572737	52.47299148634619
9500.0	469.08983411712455	517.9344861183605	48.84465200123594
+--------+--------------------+--------------------+---------------------+

3) Set Ordinary Kriging and Simple Kriging models

This is the essential step of our tutorial. We’ve set our semivariogram model and can now predict unknown values. We
will “predict” a known and arbitrary point in the first run. It is a test of Kriging, which should work as an unbiased
linear estimator. Thus it should return the exact value if we pass into it a point used for training. In the second step,
we will try to guess values at unknown locations and calculate the Root Mean Squared Error (RMSE) of interpolated
values.

We can use the same kriging() function for both kriging types. It takes those arguments:

• observations: array with known points,

• theoretical_model: fitted TheoreticalVariogram model,

• points: points to interpolate values,

• how: ok - ordinary kriging, sk - simple kriging,

• neighbors_range: None or float, the maximum distance where we search for point neighbors. If None is
given, the range is selected from the theoretical_model rang attribute.

• no_neighbors: int, number of neighbors to estimate unknown value.

• use_all_neighbors_in_range: bool, default is False. True: if the number of neighbors within the
neighbors_range is greater than the number_of_neighbors, then take all of them for modeling.

• sk_mean: None or float, the mean value of a process over a study area. It should be known before processing,
and that’s why Simple Kriging has a limited number of applications. You must have multiple samples and a
well-known area to use this parameter.

• allow_approx_solutions: Allows the approximation of kriging weights based on the OLS algorithm. Not
recommended to set it to True if you don’t know what you are doing! By default, it is set to False,

• number_of_workers: if we pass more than 10k points to interpolate, setting this parameter to the number of
your CPU workers (or -1) will speed up calculations.

We use only the first four parameters and sk_mean when we perform Simple Kriging. Let’s start! The first step is an
interpolation of the value known by our model.

[10]: # Select one known value

known_value = train_set[10]
known_value

[10]: array([2.49304390e+05, 5.40766289e+05, 2.03649998e+01])

[11]: # Predict with Ordinary Kriging

ok_interpolation = kriging(train_set, semivar, [known_value[:-1]])
ok_interpolation

100%|| 1/1 [00:00<00:00, 372.13it/s]

2.3. Tutorials 91

Pyinterpolate, Release 0.5.1

[11]: array([[2.03649998e+01, 0.00000000e+00, 2.49304390e+05, 5.40766289e+05]])

The first value is our prediction: it is precisely the same as the input in the training set! So far, the algorithm has worked
well. The second value is prediction variance error, equal to zero - we are sure it is the exact value.

Simple Kriging is slightly different than Ordinary Kriging, and we must set the process mean to retrieve valid results.
It is rarely the case. That’s why Ordinary Kriging is the first choice for many applications. We know the global mean
because we have the whole dataset, but in the real-world scenario, we cannot divide the set into training and test sets
and then get the mean from the entire dataset - it is an information leak from the test set into a model!

[12]: sk_interpolation = kriging(train_set, semivar, [known_value[:-1]], how='sk', sk_
→˓mean=float(np.mean(dem)))
sk_interpolation

100%|| 1/1 [00:00<00:00, 576.93it/s]

[12]: array([[2.03649998e+01, 0.00000000e+00, 2.49304390e+05, 5.40766289e+05]])

The Simple Kriging algorithm returns the same output as the Ordinary Kriging: [prediction, error variance,
pt x, pt y]. And as with Ordinary Kriging, Simple Kriging has returned the same value as the actual value fed to
the algorithm.

4) Predict values at unknown locations

Using kriging for interpolation of known points values is pointless, and it is an excellent tool for a testing algorithm but
nothing more. Here we will interpolate with Kriging, and we will interpolate values at unknown locations. Additionally,
we will control the no_neighbors parameter to check how it influences predictions.

In the first step, we will create a simple function to test our kriging results and calculate RMSE.

[13]: def test_kriging(train_data, variogram_model, ktype, test_values, number_of_neighbors,␣
→˓sk_mean_value=None):

predictions = kriging(observations=train_data,
theoretical_model=variogram_model,
points=test_values[:, :-1],
how=ktype,
no_neighbors=number_of_neighbors,
number_of_workers=1,
sk_mean=sk_mean_value)

mse = np.mean((predictions[:, 0] - test_values[:, -1])**2)
rmse = np.sqrt(mse)
return rmse

[14]: # Number of neighbors

no_of_n = [4, 8, 16, 32, 64, 128, 256]
print('Ordinary Kriging: tests')
print('')

for nn in no_of_n:
print('Number of neighbors:', nn)
rmse_pred = test_kriging(train_data=train_set, variogram_model=semivar, ktype='ok',␣

→˓test_values=test_set, number_of_neighbors=nn)
(continues on next page)

92 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

print('RMSE:', rmse_pred)
print('')

Ordinary Kriging: tests

Number of neighbors: 4

100%|| 4826/4826 [00:01<00:00, 3356.06it/s]

RMSE: 3.404341396262182

Number of neighbors: 8

100%|| 4826/4826 [00:01<00:00, 3344.89it/s]

RMSE: 3.2909488461696372

Number of neighbors: 16

100%|| 4826/4826 [00:01<00:00, 3243.19it/s]

RMSE: 3.2674275543792795

Number of neighbors: 32

100%|| 4826/4826 [00:19<00:00, 253.42it/s]

RMSE: 3.2608735889738663

Number of neighbors: 64

100%|| 4826/4826 [00:55<00:00, 86.70it/s]

RMSE: 3.2565732386644757

Number of neighbors: 128

100%|| 4826/4826 [01:05<00:00, 73.89it/s]

RMSE: 3.2547868359770336

Number of neighbors: 256

100%|| 4826/4826 [00:42<00:00, 114.38it/s]

RMSE: 3.2550170696805005

[15]: print('Simple Kriging: tests')
print('')

sk_mean = np.mean(dem[:, -1])

for nn in no_of_n:
print('Number of neighbors:', nn)
rmse_pred = test_kriging(train_data=train_set, variogram_model=semivar, ktype='sk',␣

→˓test_values=test_set, number_of_neighbors=nn, sk_mean_value=sk_mean)
print('RMSE:', rmse_pred)
print('')

2.3. Tutorials 93

Pyinterpolate, Release 0.5.1

Simple Kriging: tests

Number of neighbors: 4

100%|| 4826/4826 [00:01<00:00, 3898.96it/s]

RMSE: 8.697161939348147

Number of neighbors: 8

100%|| 4826/4826 [00:01<00:00, 3866.67it/s]

RMSE: 3.650066190084651

Number of neighbors: 16

100%|| 4826/4826 [00:01<00:00, 3833.67it/s]

RMSE: 3.348632949010878

Number of neighbors: 32

100%|| 4826/4826 [00:06<00:00, 729.77it/s]

RMSE: 3.2785837126433313

Number of neighbors: 64

100%|| 4826/4826 [00:10<00:00, 477.52it/s]

RMSE: 3.261651162610457

Number of neighbors: 128

100%|| 4826/4826 [00:09<00:00, 510.67it/s]

RMSE: 3.255919635781099

Number of neighbors: 256

100%|| 4826/4826 [00:26<00:00, 185.51it/s]

RMSE: 3.254332343473019

Usually, Simple Kriging will give us worse results than Ordinary Kriging because we need to know the process mean to
build a valid Simple Kriging model. Only if we know the process mean we can use Simple Kriging with a large number
of neighbors. We see that the results of Simple Kriging are better when we pass more values into it. You shouldn’t be
shocked. Simple Kriging discovers the global mean and utilizes this information when building a Kriging system.

On the other hand, Ordinary Kriging is a Swiss knife in our geostatistical toolbox. It works well even if we don’t know
the process mean, and it should be our first-choice technique.

Let’s look into processing times with a growing number of neighbors. We can theoretically take more and more neigh-
bors, but is it worth it?

• Small dataset: with small datasets (up to 1000 points), we may consider using many neighbors. It shouldn’t be
a problem for processing time.

• Large dataset: more than 5000 points? Then we must take into account two scenarios:

1. A single report or only a one-time analysis - then use as many neighbors as it is possible (within range);

2. Near-real time and systematic analyses - use fewer neighbors, between 8 - 128. I usually use 32 neighbors for
datasets with more than 1000 point pairs.

94 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Where to go from here?

• B.1.2 Kriging Benchmarking

• B.1.3 Outliers and Kriging Model

• B.2.1 Directional Ordinary Kriging

• C.1.1 Blocks to Points Interpolation with Ordinary Kriging

Changelog

Date Change description Author
2023-
08-22

The tutorial was refreshed and set along with the 0.5.0 version of the package @Simon-
Molinsky

2023-
04-15

Tutorial debugged and updated to the 0.4.1 version of the package @Simon-
Molinsky

2022-
11-05

Tutorial updated for the 0.3.5 version of the package @Simon-
Molinsky

2022-
08-20

The tutorial is updated to the version 0.3.0 of the package @Simon-
Molinsky

2021-
12-14

Sill selection was upgraded: now optimal sill is derived from the grid search within
TheoreticalSemivariogram class & error variance estimated in a correct way

@Simon-
Molinsky

2021-
12-13

Changed behavior of select_values_in_range() function @Simon-
Molinsky

2021-
12-11

Behavior of prepare_kriging_data() function has benn changed @Simon-
Molinsky

2021-
05-11

Refactored TheoreticalSemivariogram class @Simon-
Molinsky

2021-
04-03

Simple Kriging global_mean parameter update. @Simon-
Molinsky

2021-
03-31

Update related to the change of semivariogram weighting. Updated point data source. @Simon-
Molinsky

[]:

B.1.2 Kriging Benchmarking

Table of Contents:

1. Read point data,

2. Divide dataset into two sets: modeling and validation set,

3. Perform IDW and evaluate it,

4. Perform variogram modeling on the modeling set,

5. Validate Kriging and compare Kriging and IDW validation results,

2.3. Tutorials 95

Pyinterpolate, Release 0.5.1

6. Bonus scenario: only 2% of values are known!

Introduction

In this tutorial, we will learn how to validate our Kriging model. We’ll compare it to the Inverse Distance Weighting
function, where the unknown point value is interpolated as the weighted mean of its neighbors. Weights are inversely
proportional to the distance between neighboring points, dropping faster with a higher power.

(1) GENERAL FORM OF IDW

𝑧(𝑢) =

∑︀
𝑖 𝜆𝑖 * 𝑧𝑖∑︀

𝑖 𝜆𝑖

Where:

• 𝑧(𝑢): is the value at an unknown location,

• 𝑖: is an i-th known location,

• 𝑧𝑖: is a value at known location 𝑖,

• 𝜆𝑖: is a weight assigned to the known location 𝑖.

(2) WEIGHTING PARAMETER

𝜆𝑖 =
1

𝑑𝑝𝑖

Where:

• 𝑑: is a distance from the known point 𝑧𝑖 to the unknown point 𝑧(𝑢),

• 𝑝: is a hyperparameter that controls how strong a relationship is between a known and unknown point. You may
set large 𝑝 to establish a strong relationship between the closest points and the weak influence of distant points.
On the other hand, you may set a small 𝑝 to emphasize that the distance between points matters a little.

As you noticed IDW is a simple but powerful technique. Unfortunately, it has a significant drawback: we must set
``p`` - power - manually, which isn’t derived from the data and variogram. That’s why it can be used for other tasks.
An example is to use IDW as a baseline for comparison to the different techniques.

Import packages

[1]: import numpy as np

from pyinterpolate import inverse_distance_weighting # function for idw
from pyinterpolate import read_txt
from pyinterpolate import build_experimental_variogram # experimental semivariogram
from pyinterpolate import build_theoretical_variogram, TheoreticalVariogram #␣
→˓theoretical models
from pyinterpolate import kriging # kriging models

96 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

1) Read point data

[4]: dem = read_txt('samples/point_data/txt/pl_dem_epsg2180.txt')
dem[:3]

[4]: array([[2.37685325e+05, 5.45416708e+05, 5.12545509e+01],
[2.37674140e+05, 5.45209671e+05, 4.89582825e+01],
[2.37449255e+05, 5.41045935e+05, 1.68178635e+01]])

2) Divide the dataset into two sets: modeling and validation set

In this step, we will divide our dataset into two sets:

• modeling set (10%): points used for variogram modeling,

• validation set (90%): points used for prediction and results validation.

The baseline dataset will be divided randomly.

[5]: # Create modeling and validation sets

def create_model_validation_sets(dataset: np.array, training_set_ratio=0.5, rnd_
→˓seed=101):

np.random.seed(rnd_seed)

indexes_of_training_set = np.random.choice(range(len(dataset) - 1), int(training_set_
→˓ratio * len(dataset)), replace=False)

training_set = dataset[indexes_of_training_set]
validation_set = np.delete(dataset, indexes_of_training_set, 0)
return training_set, validation_set

known_points, unknown_points = create_model_validation_sets(dem)

3) Perform IDW and evaluate it

Inverse Distance Weighting doesn’t require variogram modeling or other steps. We pass power that affects weights in
a denominator. Things to remember are:

• Large power -> closer neighbors are more important,

• power which is close to the zero -> all neighbors are important, and we assume that the distant process has the
same effect on our variable as the closest events.

[6]: IDW_POWER = 2
NUMBER_OF_NEIGHBOURS = 128

idw_predictions = []

for pt in unknown_points:
idw_result = inverse_distance_weighting(known_points, pt[:-1], NUMBER_OF_NEIGHBOURS,␣

→˓IDW_POWER)
idw_predictions.append(idw_result)

2.3. Tutorials 97

Pyinterpolate, Release 0.5.1

[7]: # Evaluation

idw_rmse = np.mean(np.sqrt((unknown_points[:, -1] - np.array(idw_predictions))**2))
print(f'Root Mean Squared Error of prediction with IDW is {idw_rmse}')

Root Mean Squared Error of prediction with IDW is 2.5045203528088513

Clarification: Obtained Root Mean Squared Error could serve as a baseline for further model development. To build
a better reference, we create four IDW models of powers:

1. 0.5
2. 1
3. 2
4. 4

[8]: IDW_POWERS = [0.5, 1, 2, 4]
idw_rmse = {}

for pw in IDW_POWERS:
results = []
for pt in unknown_points:

idw_result = inverse_distance_weighting(known_points, pt[:-1], NUMBER_OF_
→˓NEIGHBOURS, pw)

results.append(idw_result)
idw_rmse[pw] = np.mean(np.sqrt((unknown_points[:, -1] - np.array(results))**2))

[9]: for pw in IDW_POWERS:
print(f'Root Mean Squared Error of prediction with IDW of power {pw} is {idw_

→˓rmse[pw]:.4f}')

Root Mean Squared Error of prediction with IDW of power 0.5 is 4.4434
Root Mean Squared Error of prediction with IDW of power 1 is 3.8513
Root Mean Squared Error of prediction with IDW of power 2 is 2.5045
Root Mean Squared Error of prediction with IDW of power 4 is 1.8198

4) Perform variogram modeling on the modeling set

In this step, we will go through semivariogram modeling for Kriging interpolation.

[10]: max_range = 10000
step_size = 500

exp_semivar = build_experimental_variogram(known_points, step_size=step_size, max_
→˓range=max_range)

[11]: semivar = build_theoretical_variogram(exp_semivar, model_name='circular', sill=exp_
→˓semivar.variance, rang=max_range)

[12]: semivar.plot()

98 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

5) Validate Kriging and compare Kriging and IDW validation results

Lastly, we perform Kriging interpolation and compare results to the IDW models. We use all points to weight values
at unknown locations and the semivariogram model we chose in the previous step.

[13]: # Set Kriging model

predictions = kriging(observations=known_points, theoretical_model=semivar,␣
→˓points=unknown_points[:, :-1], no_neighbors=128)

100%|| 3447/3447 [01:17<00:00, 44.31it/s]

[14]: # Evaluation

kriging_rmse = np.mean(np.sqrt((unknown_points[:, -1] - np.array(predictions[:, 0]))**2))
print(f'Root Mean Squared Error of prediction with Kriging is {kriging_rmse}')

Root Mean Squared Error of prediction with Kriging is 1.6638061333290732

Clarification: Kriging is better than any of the IDW models, and we may assume that our modeling approach gives
us better insights into the spatial process we are observing. But this is not the end. Let’s consider a more complex
scenario!

2.3. Tutorials 99

Pyinterpolate, Release 0.5.1

6) Bonus scenario: only 2% of values are known!

Data sampled from the real world is less good than the sample from the tutorial. It is too expensive to densely sample
every location, and usually, we get only a tiny percent of the area covered by data. That’s why it is good to compare
IDW vs. Kriging in this scenario! We repeat steps 1-5 with a change in the division for the modeling/validation set.
(I encourage you to try it alone and compare your code and results with those in this notebook).

[15]: # Data preparation

known_points, unknown_points = create_model_validation_sets(dem, 0.02, rnd_seed=112)

[16]: IDW_POWERS = [0.5, 1, 2, 4, 6, 8]
idw_rmse = {}

for pw in IDW_POWERS:
results = []
for pt in unknown_points:

idw_result = inverse_distance_weighting(known_points, pt[:-1], NUMBER_OF_
→˓NEIGHBOURS, pw)

results.append(idw_result)
idw_rmse[pw] = np.mean(np.sqrt((unknown_points[:, -1] - np.array(results))**2))

[17]: for pw in IDW_POWERS:
print(f'Root Mean Squared Error of prediction with IDW of power {pw} is {idw_

→˓rmse[pw]:.4f}')

Root Mean Squared Error of prediction with IDW of power 0.5 is 17.1027
Root Mean Squared Error of prediction with IDW of power 1 is 13.8879
Root Mean Squared Error of prediction with IDW of power 2 is 7.1886
Root Mean Squared Error of prediction with IDW of power 4 is 5.1183
Root Mean Squared Error of prediction with IDW of power 6 is 5.2371
Root Mean Squared Error of prediction with IDW of power 8 is 5.3415

[18]: # Variogram

max_range = 10000
step_size = 500

exp_semivar = build_experimental_variogram(known_points, step_size=step_size, max_
→˓range=max_range)

[19]: semivar = TheoreticalVariogram()
semivar.autofit(exp_semivar, model_name='spherical')
semivar.plot()

100 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

[20]: # Set Kriging model

predictions = kriging(observations=known_points, theoretical_model=semivar,␣
→˓points=unknown_points[:, :-1], no_neighbors=128, use_all_neighbors_in_range=False)

100%|| 6756/6756 [00:58<00:00, 115.93it/s]

[21]: # Evaluation

kriging_rmse = np.mean(np.sqrt((unknown_points[:, -1] - np.array(predictions[:, 0]))**2))
print(f'Root Mean Squared Error of prediction with Kriging is {kriging_rmse}')

Root Mean Squared Error of prediction with Kriging is 4.886647202272596

[22]: # Comparison

for pw in IDW_POWERS:
print(f'Root Mean Squared Error of prediction with IDW of power {pw} is {idw_

→˓rmse[pw]:.4f}')
print(f'Root Mean Squared Error of prediction with Kriging is {kriging_rmse:.4f}')

Root Mean Squared Error of prediction with IDW of power 0.5 is 17.1027
Root Mean Squared Error of prediction with IDW of power 1 is 13.8879
Root Mean Squared Error of prediction with IDW of power 2 is 7.1886
Root Mean Squared Error of prediction with IDW of power 4 is 5.1183
Root Mean Squared Error of prediction with IDW of power 6 is 5.2371
Root Mean Squared Error of prediction with IDW of power 8 is 5.3415
Root Mean Squared Error of prediction with Kriging is 4.8866

Your results may be different (if you set another random seed), but in most cases, Kriging will be better than IDW or
very close to the best results from IDW. Even more important is that for the single data source with a low number of
samples, we don’t have the opportunity to perform the validation step, and we’re unable to guess how big the power
parameter should be. With Kriging, we model variogram, and voila! - model works.

2.3. Tutorials 101

Pyinterpolate, Release 0.5.1

Where to go from here?

• B.1.3 Outliers and Kriging Model

• B.2.1 Directional Ordinary Kriging

• C.1.1 Blocks to Points Interpolation with Ordinary Kriging

• C.1.2 Semivariogram Regularization

Changelog

Date Change description Author
2023-
08-23

The tutorial was refreshed and set along with the 0.5.0 version of the package @Simon-
Molinsky

2023-
04-15

Tutorial debugged and updated to the 0.4.1 version of the package @Simon-
Molinsky

2022-
11-05

Tutorial updated for the 0.3.5 version of the package @Simon-
Molinsky

2022-
08-23

The new version of tutorial for the 0.3.0 version of a package @Simon-
Molinsky

2021-
12-14

Sill selection was upgraded: now optimal sill is derived from the grid search within
TheoreticalSemivariogram class

@Simon-
Molinsky

2021-
12-13

Changed behavior of select_values_in_range() function @Simon-
Molinsky

2021-
12-08

Behavior of prepare_kriging_data() function has changed @Simon-
Molinsky

2021-
05-12

First version of tutorial @Simon-
Molinsky

[]:

B.1.3 Outliers and Kriging

Table of Contents:

1. Read point data and take 10% of it as a sample for the further analysis (dataset A),

2. Check if outliers are present in a data and create additional dataset without outliers (dataset B),

3. Create the Variogram Point Cloud model for the datasets A and B,

4. Remove outliers from datasets A and B,

5. Create four Ordinary Kriging models and compare their performance.

102 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Introduction

Outliers may affect our analysis and the final interpolation results. In this tutorial, we learn about their influence on the
final model and compare interpolation errors for different scenarios where data is cleaned differently.

We can remove too high or too low values at the preprocessing stage (check part 2 of the tutorial) or remove outliers
directly from the variogram point cloud (part 4). Results from each type of preprocessing (and a raw dataset analysis)
are different, and we will compare them.

We use:

• DEM data, which is stored in a file samples/point_data/txt/pl_dem_epsg2180.txt.

Import packages

[2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from pyinterpolate import calc_point_to_point_distance, read_txt, kriging,␣
→˓TheoreticalVariogram, VariogramCloud

1) Read point data and divide it into the training and test set

[3]: # Read data from file

dem = read_txt('samples/point_data/txt/pl_dem_epsg2180.txt')

[4]: # Divide data into training and test set

def create_train_test(data, training_fraction):
idxs = np.arange(0, len(data))
number_of_training_samples = int(len(data) * training_fraction)
training_idxs = np.random.choice(idxs, size=number_of_training_samples,␣

→˓replace=False)
test_idxs = [i for i in idxs if i not in training_idxs]
training_set = data[training_idxs, :]
test_set = data[test_idxs, :]

return training_set, test_set

[5]: train, test = create_train_test(dem, 0.1)

[6]: train[:3]

[6]: array([[2.51238103e+05, 5.50262413e+05, 8.71362305e+01],
[2.45382683e+05, 5.28767297e+05, 5.84672661e+01],
[2.54519766e+05, 5.51709669e+05, 7.63842850e+01]])

2.3. Tutorials 103

Pyinterpolate, Release 0.5.1

2) Check outliers: analyze the distribution of the values

We will inspect all values in the train set to determine if our dataset contains outliers. In the beginning, we plot data
distribution with the violinplot.

[7]: # Distribution plot

plt.figure(figsize=(10, 6))
plt.violinplot(train[:, -1])
plt.show()

NOTE: Your plot may differ from the tutorial’s. Why is that? Because we take a random sample of 10%
of values, and after each iteration, the algorithm takes different points for the analysis.

Clarification:
Investigation of the plot tells us that our data is:

• grouped around the lowest values, and most of the values are below 50 meters,

• has (probably) three different distributions mixed, which can be a sign that the Digital Elevation Model covers
three different types of elevation. One is grouped around 20 meters, the next roughly 50 meters and the furthest
is visible around 70 meters.

Violinplot is suitable for the distribution analysis. Finding outliers in this plot may be challenging because we see
mostly distributions. We should change a plot type to understand if outliers exist in a dataset. The excellent choice is
the boxplot:

[8]: # Boxplot

plt.figure(figsize=(10, 6))
(continues on next page)

104 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

plt.boxplot(train[:, -1])
plt.show()

Boxplot is a unique and handy data visualization tool. Let’s analyze this plot from the bottom up to the top.

NOTE: Boxplot represents values sorted in ascending order and their statistical properties: quartiles,
median, and outliers.

• The bottom whisker (horizontal line) represents the lower range of values in our dataset,

• The box lower line is the first quartile of data or, in other words, 25% of values of our dataset are below this
point. We name it Q1.

• The middle line is the median of our dataset, and we name it Q2 or median.

• The upper line is the third quartile of a data or, in other words, 75% of values are below this point,

• The top whisker represents the upper range of values in our dataset. We name it Q3.

• Individual points (if they exist, then we see them as points below the bottom whisker or above the top whisker)
are considered outliers. They could be outliers in the upper range as well as the lower range of our data. The
significant distance between Q1 and the bottom whisker or between Q3 and the top whisker indicates potential
outliers. Points below or above this distance are treated as outliers. The outlier distance is calculated as the
𝑤𝑒𝑖𝑔ℎ𝑡 * (𝑄3 − 𝑄1) where we can manually set the weight, but other parameters are read directly from the
data.

We use this knowledge to remove outliers from the dataset, assuming that outliers are anomalies rather than unbiased
readings. We will remove outliers from the data, assuming that outliers are placed one standard deviation from Q1
(down) and Q3 (up).

[9]: # Create training set without outliers

(continues on next page)

2.3. Tutorials 105

Pyinterpolate, Release 0.5.1

(continued from previous page)

q1 = np.quantile(train[:, -1], 0.25)
q3 = np.quantile(train[:, -1], 0.75)

top_limit = q3 + (q3 - q1)

train_without_outliers = train[train[:, -1] < top_limit]

[10]: print('Length of the full training set is {} records'.format(len(train)))
print('Length of the pre-processed training set is {} records'.format(len(train_without_
→˓outliers)))

Length of the full training set is 689 records
Length of the pre-processed training set is 680 records

[11]: fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 6))
ax[0].violinplot(train_without_outliers[:, -1])
ax[0].set_title('Distribution of the training set without outliers')
ax[1].boxplot(train_without_outliers[:, -1])
ax[1].set_title('Statistics of the training set without outliers')
plt.show()

Clarification: We have cut some records from the baseline training dataset. The distribution plot (violinplot) has a
shorter tail and ends more abruptly upwards. The boxplot of the new data doesn’t have any outliers. The one crucial
thing to notice is that the observations are still skewed, but this is not a problem for this concrete tutorial.

NOTE: if you are eager to know how to deal with skewed datasets, we recommend the article Transforming
Skewed Data.

106 Chapter 2. Contents

https://anatomisebiostats.com/biostatistics-blog/transforming-skewed-data/
https://anatomisebiostats.com/biostatistics-blog/transforming-skewed-data/

Pyinterpolate, Release 0.5.1

3) Create the Variogram Point Cloud model for datasets A and B

Now, we are going one step further, and we will transform both datasets with- and without- outliers and calculate
variogram point clouds. Then, we compare both clouds.

[12]: def get_variogram_point_cloud(dataset, max_range, number_of_lags=8):
step_size = max_range / number_of_lags
cloud = VariogramCloud(input_array=dataset, step_size=step_size, max_range=max_range,

→˓ calculate_on_creation=True)
return cloud

[13]: whole_distance = np.max(calc_point_to_point_distance(train[:, :-1]))

cloud_raw = get_variogram_point_cloud(train, whole_distance)
cloud_processed = get_variogram_point_cloud(train_without_outliers, whole_distance)

[14]: # Show variogram cloud: initial training dataset

cloud_raw.plot('box')

[14]: True

[15]: # Show variogram cloud: pre-processed training dataset

cloud_processed.plot('box')

2.3. Tutorials 107

Pyinterpolate, Release 0.5.1

[15]: True

Clarification: a quick look into the results shows that calculated semivariances are skewed into significant positive
values for each lag, but most profoundly within middle lags (~15:21 km). The processed dataset has lower semivariances
than the raw readings, and both variograms have a similar shape.

In the next cell, we will check a standard deviation of the per lag variances.

[16]: for k, v in cloud_raw.experimental_point_cloud.items():
print('Lag {:.2f}'.format(k))

v_raw = int(np.std(v))
v_pro = int(np.std(cloud_processed.experimental_point_cloud[k]))
v_smape = 100 * (np.abs(v_raw - v_pro) / (0.5 * (v_raw + v_pro)))

print('Standard Deviation raw dataset:', v_raw)
print('Standard Deviation processed dataset:', v_pro)
print('Symmetric Mean Absolute Percentage Error of Variances: {:.2f}'.format(v_

→˓smape))
print('')

Lag 3602.70
Standard Deviation raw dataset: 562
Standard Deviation processed dataset: 559
Symmetric Mean Absolute Percentage Error of Variances: 0.54

Lag 7205.39
Standard Deviation raw dataset: 1078
Standard Deviation processed dataset: 1005
Symmetric Mean Absolute Percentage Error of Variances: 7.01

(continues on next page)

108 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

Lag 10808.09
Standard Deviation raw dataset: 1298
Standard Deviation processed dataset: 1185
Symmetric Mean Absolute Percentage Error of Variances: 9.10

Lag 14410.79
Standard Deviation raw dataset: 1345
Standard Deviation processed dataset: 1204
Symmetric Mean Absolute Percentage Error of Variances: 11.06

Lag 18013.49
Standard Deviation raw dataset: 1269
Standard Deviation processed dataset: 1136
Symmetric Mean Absolute Percentage Error of Variances: 11.06

Lag 21616.18
Standard Deviation raw dataset: 974
Standard Deviation processed dataset: 913
Symmetric Mean Absolute Percentage Error of Variances: 6.47

Lag 25218.88
Standard Deviation raw dataset: 747
Standard Deviation processed dataset: 712
Symmetric Mean Absolute Percentage Error of Variances: 4.80

Clarification: The differences (sMAPE) per lag vary greatly. We can see that the preprocessing of raw values intro-
duces the information lost, and it is especially painful for the closest neighbors. It doesn’t mean that the preprocessing of
raw observations is not recommended, but it is a good idea to include the spatial component in the outliers’ detection
process. By spatial component, we mean working with variograms instead of the raw points.

The raw data cleaning has lowered the semivariances dispersion for the middle lags (where we have the largest number
of point pairs for the analysis).

At this point, we cannot judge which dataset is better for the modeling. Instead, we will remove outliers from both
variograms (instead of the raw data).

4) Remove outliers from the variograms

In this step, we will use pyinterpolate’s function remove_outliers() to build two additional variogram point clouds
from the raw and processed datasets. We delete the top part outliers of the semivariance values rather than the raw
readings.

[17]: raw_without_outliers = cloud_raw.remove_outliers(method='zscore', z_lower_limit=-2, z_
→˓upper_limit=2, inplace=False)
prep_without_outliers = cloud_processed.remove_outliers(method='zscore', z_lower_limit=-
→˓2, z_upper_limit=2, inplace=False)

[18]: data_raw = [x for x in cloud_raw.experimental_point_cloud.values()]
data_raw_not_out = [x for x in raw_without_outliers.experimental_point_cloud.values()]
data_prep = [x for x in cloud_processed.experimental_point_cloud.values()]
data_prep_not_out = [x for x in prep_without_outliers.experimental_point_cloud.values()]

2.3. Tutorials 109

Pyinterpolate, Release 0.5.1

[19]: fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(16, 14))

ax[0, 0].boxplot(data_raw)
ax[0, 0].set_title('Semivariances Distribution in the Raw Dataset')
ax[0, 0].set_xlabel('Lag number')
ax[0, 0].set_ylabel('Semivariance value')

ax[0, 1].boxplot(data_raw_not_out)
ax[0, 1].set_title('Raw Dataset after the Outliers Detection and Removal')
ax[0, 1].set_xlabel('Lag number')
ax[0, 1].set_ylabel('Semivariance value')

ax[1, 0].boxplot(data_prep)
ax[1, 0].set_title('Semivariances Distribution in the Preprocessed Dataset')
ax[1, 0].set_xlabel('Lag number')
ax[1, 0].set_ylabel('Semivariance value')

ax[1, 1].boxplot(data_prep_not_out)
ax[1, 1].set_title('Preprocessed Dataset after the Outliers Detection and Removal')
ax[1, 1].set_xlabel('Lag number')
ax[1, 1].set_ylabel('Semivariance value')

plt.show()

110 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Clarification: Comparison of multiple variogram clouds could be challenging. We see that the largest semivariances
are present in the raw data. Heavily processed data has the lowest number of outliers. The medians in each dataset are
distributed over a similar pattern. How is it similar? We can check if we transform the variogram point cloud into the
experimental semivariogram. Pyinterpolate has a method for it: .calculate_experimental_variogram(). We
use it and compare four plots of semivariances to gain more insight into the transformations.

[20]: raw_semivar = cloud_raw.calculate_experimental_variogram()
raw_semivar_not_out = raw_without_outliers.calculate_experimental_variogram()
prep_semivar = cloud_processed.calculate_experimental_variogram()
prep_semivar_not_out = prep_without_outliers.calculate_experimental_variogram()

[21]: plt.figure(figsize=(14, 6))
plt.plot(raw_semivar[:, 1], c='#a6611a')
plt.plot(raw_semivar_not_out[:, 1], c='#dfc27d')
plt.plot(prep_semivar[:, 1], '--', c='#80cdc1')
plt.plot(prep_semivar_not_out[:, 1], '--', c='#018571')
plt.title('Comparison of experimental semivariograms created with the different data␣

(continues on next page)

2.3. Tutorials 111

Pyinterpolate, Release 0.5.1

(continued from previous page)

→˓preprocessing techniques')
plt.ylabel('Semivariance')
plt.xlabel('Lag number')
plt.legend(['Raw', 'Raw | Filtered Semivariances', 'Preprocessed', 'Preprocessed |␣
→˓Filtered Semivariances'])
plt.show()

Clarification: An understanding of those plots is a challenging task. Let’s divide reasoning into multiple points:

• Raw dataset and preprocessed raw dataset show a similar pattern. The differences are more pronounced for the
distant lags than for the closest point pairs,

• Datasets with the cleaned variograms are different from the raw data. The absolute semivariance values per
lag are smaller, and the semivariogram pattern is slightly different. Interestingly, the possible two distributions
within the dataset are more visible in the cleaned variograms (one with a peak around the 6th lag and the other
with a peak around the 13th lag).

• The differences between semivariograms are primarily visible at larger distances, and differences are minor for
the closest point pairs.

• Filtering semivariance sharply lowers the weights per lag, and removing outliers from the input data only
slightly corrects the variogram.

Let’s check how different variograms work with real-world data.

5) Create Four Ordinary Kriging models based on the four Variogram Point Clouds and compare
their performance

[23]: # Fit different semivariogram models into prepared datasets and variograms

Raw
raw_theo = TheoreticalVariogram()
raw_theo.autofit(experimental_variogram=raw_semivar, return_params=False, nugget=0)

(continues on next page)

112 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

Raw with cleaned variogram
raw_theo_no_out = TheoreticalVariogram()
raw_theo_no_out.autofit(experimental_variogram=raw_semivar_not_out, return_params=False,␣
→˓nugget=0)

Preprocessed
prep_theo = TheoreticalVariogram()
prep_theo.autofit(experimental_variogram=prep_semivar, return_params=False, nugget=0)

Preprocessed with cleaned variogram
prep_theo_no_out = TheoreticalVariogram()
prep_theo_no_out.autofit(experimental_variogram=prep_semivar_not_out, return_
→˓params=False, nugget=0)

[24]: # Set Kriging models

Raw
raw_model = kriging(observations=train, theoretical_model=raw_theo, points=test[:, :-1],␣
→˓allow_approx_solutions=True)

Raw & cleaned
c_raw_model = kriging(observations=train, theoretical_model=raw_theo_no_out,␣
→˓points=test[:, :-1], allow_approx_solutions=True)

Preprocessed
prep_model = kriging(observations=train, theoretical_model=prep_theo, points=test[:, :-
→˓1], allow_approx_solutions=True)

Preprocessed & cleaned
c_prep_model = kriging(observations=train, theoretical_model=prep_theo_no_out,␣
→˓points=test[:, :-1], allow_approx_solutions=True)

0%| | 0/6204 [00:00<?, ?it/s]/home/szymon/Documents/Programming/Repositories/
→˓pyinterpolate-environment/pyinterpolate/pyinterpolate/kriging/utils/process.py:124:␣
→˓UserWarning: 'Kriging system solution is based on the approximate solution, output may␣
→˓be incorrect!'
warnings.warn(LeastSquaresApproximationWarning().__str__())

100%|| 6204/6204 [00:01<00:00, 4084.98it/s]
100%|| 6204/6204 [00:01<00:00, 4905.61it/s]
100%|| 6204/6204 [00:01<00:00, 5030.64it/s]
100%|| 6204/6204 [00:01<00:00, 4967.68it/s]

[25]: # Build test function

def calculate_model_deviation(modeled_values, test_set):
mse = ((test_set[:, -1] - modeled_values[:, 0])**2)
return mse

[26]: r_test = calculate_model_deviation(raw_model, test)

[27]: cr_test = calculate_model_deviation(c_raw_model, test)

2.3. Tutorials 113

Pyinterpolate, Release 0.5.1

[28]: p_test = calculate_model_deviation(prep_model, test)

[29]: cp_test = calculate_model_deviation(c_prep_model, test)

[30]: df = pd.DataFrame(data=np.array([r_test, cr_test, p_test, cp_test]).transpose(),
columns=['Raw', 'Raw-cleaned', 'Preprocessed', 'Preprocessed-cleaned'])

We will use .describe() method from pandas to get the errors statistic:

[31]: df.describe()

[31]: Raw Raw-cleaned Preprocessed Preprocessed-cleaned
count 6.204000e+03 6.204000e+03 6.204000e+03 6.204000e+03
mean 4.112253e+03 1.125479e+03 1.616366e+03 9.951413e+03
std 1.496551e+05 2.407578e+04 4.314202e+04 7.176860e+05
min 7.560711e-08 3.693612e-07 4.051043e-07 2.012364e-07
25% 9.082049e-01 8.223928e-01 9.574270e-01 8.203482e-01
50% 7.449470e+00 7.218670e+00 7.740437e+00 7.111464e+00
75% 5.507547e+01 5.230695e+01 5.615120e+01 5.161227e+01
max 1.004389e+07 1.049016e+06 2.625928e+06 5.651596e+07

The view of this table may be different each time you run this tutorial (and it is related to the training-test division
process). In some cases, you may get better results for the cleaned dataset; for others, results will be better for raw data.
That’s why we should always have a validation set to compare different scenarios. The other idea is to use all of the
models and create a distribution of predictions and errors per point - we can use it later for decisions.

NOTE: The example in this tutorial is related to the Digital Elevation Model, which the data provider
preprocessed (Copernicus Land Monitoring Services). You shouldn’t get the impression that raw data
preprocessing and filtering are not required for the analysis. There are cases where the sensor may produce
unreliable and biased results, such as a satellite camera’s saturated pixel. Removing it with the specific
noise-filtering algorithm before the variogram point cloud development is better.

Where to go from here?

• B.2.1 Directional Ordinary Kriging

• C.1.1 Blocks to Points Interpolation with Ordinary Kriging

• C.1.2 Semivariogram Regularization

114 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Changelog

Date Change description Author
2023-
08-
23

The tutorial was refreshed and set along with the 0.5.0 version of the package @SimonMolin-
sky

2023-
04-
15

Tutorial debugged and updated to the 0.4.1 version of the package @SimonMolin-
sky

2022-
11-
05

Tutorial updated for the 0.3.5 version of the package @SimonMolin-
sky

2022-
10-
08

The tutorial updated to the version 0.3.2 of the package @SimonMolin-
sky

2022-
08-
27

The tutorial updated to the version 0.3.0 of the package @SimonMolin-
sky

2021-
12-
14

Sill selection was upgraded: now optimal sill is derived from the grid search within
TheoreticalSemivariogram class

@SimonMolin-
sky

2021-
12-
13

Changed behavior of select_values_in_range() function @SimonMolin-
sky

2021-
12-
11

Behavior of prepare_kriging_data() function has benn changed @SimonMolin-
sky

2021-
10-
13

Refactored TheoreticalSemivariogram (name change of class attribute) and refac-
tored calc_semivariance_from_pt_cloud() function to protect calculations from
NaN's.

@ethmtrgt &
@SimonMolin-
sky

2021-
08-
22

Initial release @SimonMolin-
sky

[]:

B.2.1 Directional Ordinary Kriging

Table of Contents:

1. Read meuse dataset, transform data,

2. Create directional semivariograms,

3. Create directional kriging models,

4. Compare results of interpolation.

2.3. Tutorials 115

Pyinterpolate, Release 0.5.1

Introduction

In this tutorial, we will learn about Ordinary Kriging with directions. The classic Kriging works with an isotropic
semivariogram. The similarity between points has the same weights in all directions. Actual geographical data is
rarely isotropic, and we distinguish leading directions in spatial processes. The example may be a temperature, where
differences in the North-South axis are greater than in the West-East axis.

1. Read meuse dataset and transform data

We use meuse dataset and interpolate zinc concentrations. Dataset is provided in:

Pebesma, Edzer. (2009). The meuse data set: a tutorial for the gstat R package -> link to the publication

[1]: import geopandas as gpd
import numpy as np
import pandas as pd
import pyinterpolate as ptp
from pyinterpolate.variogram.empirical.experimental_variogram import DirectionalVariogram
import matplotlib.pyplot as plt

[2]: MEUSE_FILE = 'samples/point_data/csv/meuse/meuse.csv'
MEUSE_GRID = 'samples/point_data/csv/meuse/meuse_grid.csv'

Variogram parameters
STEP_SIZE = 100
MAX_RANGE = 1600

[3]: df = pd.read_csv(MEUSE_FILE, usecols=['x', 'y', 'zinc'])

[4]: df.head()

[4]: x y zinc
0 181072 333611 1022
1 181025 333558 1141
2 181165 333537 640
3 181298 333484 257
4 181307 333330 269

Let’s check the distribution of zinc values:

[5]: df['zinc'].plot(kind='hist')

[5]: <Axes: ylabel='Frequency'>

116 Chapter 2. Contents

https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf

Pyinterpolate, Release 0.5.1

Our zinc concentrations are highly skewed. We should take a natural logarithm of values to make the distribution closer
to the normal.

[6]: df['log-zinc'] = np.log(df['zinc'])

[7]: df['log-zinc'].plot(kind='hist')

[7]: <Axes: ylabel='Frequency'>

2.3. Tutorials 117

Pyinterpolate, Release 0.5.1

The histogram is still not close to the normal distribution; it has two modes, but the tail is shorter. We will build models
based on this histogram.

2. Create directional variograms

Data is prepared, we can model it’s semivariance. We will perform an isotropic modeling and a full directional modeling
in N-S, W-E, NE-SW, and NW-SE axes.

[8]: dirvar = DirectionalVariogram(input_array=df[['x', 'y', 'log-zinc']],
step_size=STEP_SIZE,
max_range=MAX_RANGE,
tolerance=0.1,
method='e')

dirvar.show()

118 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

We have five experimental variograms for further modeling. Let’s build theoretical models from those.

[11]: MODEL_NAME = 'spherical'
DIRECTIONS = ['ISO', 'NS', 'WE', 'NE-SW', 'NW-SE']

[12]: theoretical_models = {}
variograms = dirvar.get()

for direction in DIRECTIONS:
theoretical_model = ptp.TheoreticalVariogram()
theoretical_model.autofit(experimental_variogram=variograms[direction],

model_name=MODEL_NAME,
nugget=0)

theoretical_models[direction] = theoretical_model

3. Create directional Ordinary Kriging models

With a set of directional variograms we will perform spatial interpolation over a defined grid.

[13]: grid = pd.read_csv(MEUSE_GRID, usecols=['x', 'y'])
grid.head()

[13]: x y
0 181180 333740
1 181140 333700
2 181180 333700
3 181220 333700
4 181100 333660

[16]: kriged_results = {}

for direction in DIRECTIONS:
result = ptp.kriging(observations=df[['x', 'y', 'log-zinc']].values,

theoretical_model=theoretical_models[direction],
(continues on next page)

2.3. Tutorials 119

Pyinterpolate, Release 0.5.1

(continued from previous page)

points=grid.values,
no_neighbors=16,
use_all_neighbors_in_range=True)

result = pd.DataFrame(result, columns=['pred', 'err', 'x', 'y'])
rgeometry = gpd.points_from_xy(result['x'], result['y'])
rgeometry.name = 'geometry'
result = gpd.GeoDataFrame(result, geometry=rgeometry)

kriged_results[direction] = result

100%|| 3103/3103 [00:03<00:00, 776.43it/s]
100%|| 3103/3103 [00:00<00:00, 4160.84it/s]
100%|| 3103/3103 [00:00<00:00, 3911.17it/s]
100%|| 3103/3103 [00:00<00:00, 3740.61it/s]
100%|| 3103/3103 [00:00<00:00, 4165.74it/s]

[17]: kriged_results['ISO'].head()

[17]: pred err x y geometry
0 6.523941 0.283231 181180.0 333740.0 POINT (181180.000 333740.000)
1 6.664006 0.198841 181140.0 333700.0 POINT (181140.000 333700.000)
2 6.541937 0.224790 181180.0 333700.0 POINT (181180.000 333700.000)
3 6.407741 0.254611 181220.0 333700.0 POINT (181220.000 333700.000)
4 6.809450 0.109191 181100.0 333660.0 POINT (181100.000 333660.000)

With all models calculated, we can compare the results of interpolation. We will show interpolation and variance errors
across the models.

4. Compare interpolated results

[18]: fig, ax = plt.subplots(nrows=5, ncols=2, figsize=(15, 20))

kriged_results['ISO'].plot(ax=ax[0, 0], column='pred', cmap='cividis')
kriged_results['ISO'].plot(ax=ax[0, 1], column='err', cmap='Reds')
ax[0, 0].set_title('Prediction - isotropic')
ax[0, 1].set_title('Error - isotropic')

kriged_results['NS'].plot(ax=ax[1, 0], column='pred', cmap='cividis')
kriged_results['NS'].plot(ax=ax[1, 1], column='err', cmap='Reds')
ax[1, 0].set_title('Prediction - NS')
ax[1, 1].set_title('Error - NS')

kriged_results['WE'].plot(ax=ax[2, 0], column='pred', cmap='cividis')
kriged_results['WE'].plot(ax=ax[2, 1], column='err', cmap='Reds')
ax[2, 0].set_title('Prediction - WE')
ax[2, 1].set_title('Error - WE')

kriged_results['NE-SW'].plot(ax=ax[3, 0], column='pred', cmap='cividis')
kriged_results['NE-SW'].plot(ax=ax[3, 1], column='err', cmap='Reds')
ax[3, 0].set_title('Prediction - NE-SW')
ax[3, 1].set_title('Error - NE-SW')

(continues on next page)

120 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

kriged_results['NW-SE'].plot(ax=ax[4, 0], column='pred', cmap='cividis')
kriged_results['NW-SE'].plot(ax=ax[4, 1], column='err', cmap='Reds')
ax[4, 0].set_title('Prediction - NW-SE')
ax[4, 1].set_title('Error - NW-SE')

plt.show()

2.3. Tutorials 121

Pyinterpolate, Release 0.5.1

122 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Directional Kriging clearly shows the leading direction and is even more pronounced in the variance error maps. At
the end, let’s compare the mean of directional interpolations to the isotropic interpolation result:

[19]: mean_directional_results = (kriged_results['NS']['pred'] +
kriged_results['WE']['pred'] +
kriged_results['NE-SW']['pred'] +
kriged_results['NW-SE']['pred']) / 4

[20]: kriged_results['ISO']['mean_dir_pred'] = mean_directional_results

[21]: _, ax = plt.subplots(nrows=1, ncols=2, figsize=(15, 20))

kriged_results['ISO'].plot(ax=ax[0], column='pred', cmap='cividis')
ax[0].set_title('Prediction - isotropic')
kriged_results['ISO'].plot(ax=ax[1], column='mean_dir_pred', cmap='cividis')
ax[1].set_title('Prediction - mean directional results')
plt.show()

2.3. Tutorials 123

Pyinterpolate, Release 0.5.1

Where to go from here?

• C.1.1 Blocks to Points Interpolation with Ordinary Kriging

• C.1.2 Semivariogram Regularization

Changelog

Date Change description Author Package Ver-
sion

2023-08-
23

The tutorial was refreshed and set along with the 0.5.0 version of
the package

@Simon-
Molinsky

0.5.0

2023-04-
15

Update: version 0.4.1 @Simon-
Molinsky

0.4.1

2022-11-
19

The first version of tutorial @Simon-
Molinsky

0.3.6

[]:

2.3.3 Advanced

C.1.1 Blocks to points Ordinary Kriging

Table of Contents:

1. Read block data,

2. Detect and remove outliers,

3. Create semivariogram model,

4. Read point data canvas,

5. Build map of interpolated values,

6. Show map of interpolated values with choropleth map of the breast cancer rates.

Introduction

This tutorial is based on the question of user @ikey from Discord channel of the package (02/04/2021). Thank you
@ikey for your engagement!

In short:

Are we able to perform Semivariogram Regularization and Poisson Kriging if our point support represents
only points without any values?

No, it’s not possible. But there is a hack that we can use - we can interpolate missing values from areal centroids with
Ordinary and Simple Kriging just like we do with regular points. Why is it not possible with unknown points?

The idea behind semivariogram regularization of areal aggregates is to use semivariogram of point support. Point
support must reflect an ongoing process. For example, in the case of epidemiology:

124 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

1. We have areal counts of infections divided by POPULATION over some areas.

2. We take POPULATION blocks (points) with a number of inhabitants per block and use those as support for our
map. Thus we transform the choropleth map into the point map, and only to the points where someone is living
==> someone may be infected. We skip large parts of the map where the risk of infection is not present because
no one is living there.

3. We finally obtain the population-at-risk map of points or smoothed choropleth map of infection risk without large
visual bias where large/small areas seem to be more important.

This works when we have specific counts over area divided by another parameter (time, population, probability,
volume, etc.). In this scenario, we can find a function that links our areal counts with those underlying variables and/or
processes. Without support values, we are not able to perform semivariogram regularization.

What we want to achieve may be done with Ordinary Kriging (because our points are unknown), and semivariogram
regularization is not required (and not possible without any values).

In summary, we will learn how to:

• transform areal data into points,

• detect and remove outliers from data,

• create an interpolated map from unknown points,

• visualize and save the created map.

We use:

• for point canvas: samples/point_data/shapefile/regular_grid_points.shp,

• for areal centroids: Breast cancer rates data is stored in the shapefile samples/regularization/
cancer_data.gpkg.

This tutorial requires understanding concepts presented in Semivariogram Estimation and Variogram Point Cloud
tutorials along with Ordinary and Simple Kriging notebook and (optionally) Semivariogram Regularization tuto-
rial.

Import packages

[1]: import numpy as np
import geopandas as gpd

import matplotlib.pyplot as plt

from pyinterpolate import Blocks, VariogramCloud, TheoreticalVariogram, kriging

1) Read areal data

The block data represents the breast cancer rates in the Northeastern part of the United States. Rate is the number of
new cases divided by the population in a county, and this fraction is multiplied by a constant factor of 100,000.

We read data from geopackage and use only rate, centroid.x, and centroid.y columns.

[2]: # Read and prepare data

DATASET = 'samples/regularization/cancer_data.gpkg'
POLYGON_LAYER = 'areas'

(continues on next page)

2.3. Tutorials 125

Pyinterpolate, Release 0.5.1

(continued from previous page)

GEOMETRY_COL = 'geometry'
POLYGON_ID = 'FIPS'
POLYGON_VALUE = 'rate'
MAX_RANGE = 400000
STEP_SIZE = 40000

AREAL_INPUT = Blocks()
AREAL_INPUT.from_file(DATASET, value_col=POLYGON_VALUE, index_col=POLYGON_ID, layer_
→˓name=POLYGON_LAYER)

AREAL_INPUT.data.head()

ERROR 1: PROJ: proj_create_from_database: Open of /home/szymon/miniconda3/envs/
→˓pyinterpolate38/share/proj failed

[2]: FIPS geometry rate \
0 25019 MULTIPOLYGON (((2115688.816 556471.240, 211569... 192.2
1 36121 POLYGON ((1419423.430 564830.379, 1419729.721 ... 166.8
2 33001 MULTIPOLYGON (((1937530.728 779787.978, 193751... 157.4
3 25007 MULTIPOLYGON (((2074073.532 539159.504, 207411... 156.7
4 25001 MULTIPOLYGON (((2095343.207 637424.961, 209528... 155.3

centroid_x centroid_y
0 2.132630e+06 557971.155949
1 1.442153e+06 550673.935704
2 1.958207e+06 766008.383446
3 2.082188e+06 556830.822367
4 2.100747e+06 600235.845891

[3]: areal_centroids = AREAL_INPUT.data[['centroid_x', 'centroid_y', 'rate']].values
areal_centroids[0]

[3]: array([2.13262960e+06, 5.57971156e+05, 1.92200000e+02])

2) Detect and remove outliers

We check and clean data before the semivariogram fitting and the Ordinary Kriging interpolation. Variogram Point
Cloud is the best way to analyze data and detect outliers. We inspect and compare different lags and step sizes and their
respective point clouds. Then we will create multiple variograms and Kriging models.

[4]: # Create analysis parameters

maximum_range = 300000

number_of_lags = [4, 8, 16]
step_sizes = [maximum_range / x for x in number_of_lags]

variogram_clouds = []

for step_size in step_sizes:
vc = VariogramCloud(input_array=areal_centroids, step_size=step_size, max_

(continues on next page)

126 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

→˓range=maximum_range+step_size)
variogram_clouds.append(vc)

[5]: for vc in variogram_clouds:
print(f'Lags per area: {len(vc.lags)}')
print('')
vc.plot('violin')
print('\n###########\n')

Lags per area: 4

###########

Lags per area: 8

2.3. Tutorials 127

Pyinterpolate, Release 0.5.1

###########

Lags per area: 16

128 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

###########

What does a fast check tell us?

• point to point errors per lag are skewed toward positive values (the mean is always greater than the median),

• less lags == less variability,

• variability in the last case (32 lags) seems to be too high,

• variability in the first case (4 lags) seems to be too small,

• there are extreme semivariance values, and the largest extremities are present for the most distant lags.

What can we do?

• remove outliers (extremely high semivariances) per each lag,

• use a small number of neighbors and a range close to 200,000 to avoid unnecessary computations.

[6]: # Now remove outliers from each lag

_ = [vc.remove_outliers(method='iqr', iqr_lower_limit=3, iqr_upper_limit=1.5,␣
→˓inplace=True) for vc in variogram_clouds]

[7]: # And show data without outliers

for vc in variogram_clouds:
print(f'Lags per area: {len(vc.lags)}')
print('')
vc.plot('violin')
print('\n###########\n')

Lags per area: 4

2.3. Tutorials 129

Pyinterpolate, Release 0.5.1

###########

Lags per area: 8

130 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

###########

Lags per area: 16

###########

If we compare the y axis before and after removing outliers, we may see that values are now smaller and densely
populated. After outlier removal, we see also that 32 lags are too much, and especially for the first lag, it generates too
much noise. We can expect that model based on this division will work poorly.

3. Create a theoretical semivariogram model

Semivariogram may be fitted manually or automatically. In this case, we fit it automatically - we test multiple models,
and it’s easier to use the autofit() method of the TheoreticalVariogram object. We didn’t force any model to see
how different results we would get.

[8]: theoretical_semivariograms = []

for idx, vc in enumerate(variogram_clouds):

print(f'Semivariance calculated for {vc.lags} lags.')
print('')
Calculate experimental model
exp_model = vc.calculate_experimental_variogram()

Assign experimental model and data to TheoreticalSemivariogram

(continues on next page)

2.3. Tutorials 131

Pyinterpolate, Release 0.5.1

(continued from previous page)

theo_semi = TheoreticalVariogram()
theo_semi.autofit(experimental_variogram=exp_model, nugget=0)
theoretical_semivariograms.append(theo_semi)
print('')
print('Model parameters:')
print('Model type:', theo_semi.name)
print('Nugget:', theo_semi.nugget)
print('Sill:', theo_semi.sill)
print('Range:', theo_semi.rang)
print('Model error:', theo_semi.rmse)
print('')
print('#####')

Semivariance calculated for [75000. 150000. 225000. 300000.] lags.

Model parameters:
Model type: spherical
Nugget: 0
Sill: 104.18060667237297
Range: 118000.0
Model error: 7.462726772043129

#####
Semivariance calculated for [37500. 75000. 112500. 150000. 187500. 225000. 262500.␣
→˓300000.] lags.

Model parameters:
Model type: spherical
Nugget: 0
Sill: 109.59322531046718
Range: 70000.0
Model error: 9.709346473449811

#####
Semivariance calculated for [18750. 37500. 56250. 75000. 93750. 112500. 131250.␣
→˓150000. 168750.
187500. 206250. 225000. 243750. 262500. 281250. 300000.] lags.

Model parameters:
Model type: spherical
Nugget: 0
Sill: 111.06413642423938
Range: 30000.0
Model error: 21.29533062806228

#####

/home/szymon/Documents/Programming/Repositories/pyinterpolate-environment/pyinterpolate/
→˓pyinterpolate/variogram/theoretical/semivariogram.py:509: UserWarning: If you provide␣
→˓experimental variogram as a numpy array you must remember that the direction parameter␣

(continues on next page)

132 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

→˓must be set if it is a directional variogram. Otherwise, algorithm assumes that␣
→˓variogram is isotropic.
warnings.warn(msg)

Each case has a different model type, a different sill, and a different range! How do we choose the model parameters
appropriately in this scenario? Error rises with the number of lags but is it a good indicator of the semivariogram fit?
No, and we should be careful when choosing variograms with a few lags instead of variograms with multiple lags. We
may miss some spatial patterns that will be averaged with a smaller number of lags. The 8-lag variogram seems to be
the best because RMSE is the lowest. On the other hand, 32-lags variograms work poorly!

4. Read point data canvas

Our variogram model is ready to load the point file as the GeoDataFrame object, which stores the geometry column
and data features as tables.

[9]: points = 'samples/point_data/shapefile/regular_grid_points.shp' # file with grid for␣
→˓analysis
gdf_pts = gpd.read_file(points)
gdf_pts.set_index('id', inplace=True)
gdf_pts['x'] = gdf_pts.geometry.x
gdf_pts['y'] = gdf_pts.geometry.y
gdf_pts.head()

[9]: geometry x y
id
81.0 POINT (1277277.671 441124.507) 1.277278e+06 441124.5068
82.0 POINT (1277277.671 431124.507) 1.277278e+06 431124.5068
83.0 POINT (1277277.671 421124.507) 1.277278e+06 421124.5068
84.0 POINT (1277277.671 411124.507) 1.277278e+06 411124.5068
85.0 POINT (1277277.671 401124.507) 1.277278e+06 401124.5068

5. Build a map of interpolated values

We can model all values in a batch. If we set the number_of_workers parameter to -1 or a positive integer, then the
algorithm will use parallel processing functions to speed up calculations.

Based on the learning from a semivariogram modeling step, we will set a number of neighboring areas to 8 and range
to 200000. We will append interpolated values and errors to an existing data frame and plot them to compare results.

[10]: preds_cols = []
errs_cols = []

for semi_model in theoretical_semivariograms:
kriged = kriging(observations=areal_centroids,

theoretical_model=semi_model,
points=gdf_pts[['x', 'y']].values,
neighbors_range=200000,
no_neighbors=8,
number_of_workers=1,
use_all_neighbors_in_range=True)

(continues on next page)

2.3. Tutorials 133

Pyinterpolate, Release 0.5.1

(continued from previous page)

Interpolate missing values and uncertainty
pred_col_name = 'p ' + semi_model.name[:3] + ' ' + str(len(semi_model.lags))
uncertainty_col_name = 'e ' + semi_model.name[:3] + ' ' + str(len(semi_model.lags))
gdf_pts[pred_col_name] = kriged[:, 0]
gdf_pts[uncertainty_col_name] = kriged[:, 1]
preds_cols.append(pred_col_name)
errs_cols.append(uncertainty_col_name)

100%|| 5419/5419 [00:54<00:00, 99.68it/s]
100%|| 5419/5419 [00:26<00:00, 206.25it/s]
100%|| 5419/5419 [00:22<00:00, 238.09it/s]

[11]: gdf_pts.head()

[11]: geometry x y p sph 4 \
id
81.0 POINT (1277277.671 441124.507) 1.277278e+06 441124.5068 132.133667
82.0 POINT (1277277.671 431124.507) 1.277278e+06 431124.5068 130.583635
83.0 POINT (1277277.671 421124.507) 1.277278e+06 421124.5068 129.607074
84.0 POINT (1277277.671 411124.507) 1.277278e+06 411124.5068 128.854301
85.0 POINT (1277277.671 401124.507) 1.277278e+06 401124.5068 128.549723

e sph 4 p sph 8 e sph 8 p sph 16 e sph 16
id
81.0 65.848568 133.061501 100.081621 131.969565 115.893012
82.0 64.566536 131.102959 100.171994 130.604348 115.893012
83.0 63.776407 130.397073 99.884160 130.604348 115.893012
84.0 63.223374 130.168520 99.475313 130.604348 115.893012
85.0 62.707759 130.652012 98.828762 130.860000 115.506702

This is the somewhat complicated function in which we interpolate missing values as new columns of GeoDataFrame.
Uncertainty is assigned to interpolated results for further analysis.

Now we can save our GeoDataFrame as a shapefile.

[12]: # Save interpolation results

gdf_pts.to_file('output/interpolation_results_areal_to_point.shp')

Now we will check the results directly in the notebook.

6. Show a map of interpolated values with a choropleth map of the breast cancer rates

[13]: # Now compare results to choropleth maps
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(16, 16), sharex='all', sharey='all')

base1 = AREAL_INPUT.data.plot(ax=axes[0, 0], legend=True, edgecolor='black', color='white
→˓')
base2 = AREAL_INPUT.data.plot(ax=axes[0, 1], legend=True, edgecolor='black', color='white
→˓')
base3 = AREAL_INPUT.data.plot(ax=axes[0, 2], legend=True, edgecolor='black', color='white
→˓')

(continues on next page)

134 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

base4 = AREAL_INPUT.data.plot(ax=axes[1, 0], legend=True, edgecolor='black', color='white
→˓')
base5 = AREAL_INPUT.data.plot(ax=axes[1, 1], legend=True, edgecolor='black', color='white
→˓')
base6 = AREAL_INPUT.data.plot(ax=axes[1, 2], legend=True, edgecolor='black', color='white
→˓')

gdf_pts.plot(ax=base1, column=preds_cols[0], cmap='Spectral_r', alpha=0.3)
gdf_pts.plot(ax=base2, column=preds_cols[1], cmap='Spectral_r', alpha=0.3)
gdf_pts.plot(ax=base3, column=preds_cols[2], cmap='Spectral_r', alpha=0.3)
gdf_pts.plot(ax=base4, column=errs_cols[0], cmap='Reds', alpha=0.3)
gdf_pts.plot(ax=base5, column=errs_cols[1], cmap='Reds', alpha=0.3)
gdf_pts.plot(ax=base6, column=errs_cols[2], cmap='Reds', alpha=0.3)

axes[0, 0].set_title(preds_cols[0])
axes[0, 1].set_title(preds_cols[1])
axes[0, 2].set_title(preds_cols[2])
axes[1, 0].set_title(errs_cols[0])
axes[1, 1].set_title(errs_cols[1])
axes[1, 2].set_title(errs_cols[2])

plt.suptitle('Comparison of different Kriging models outputs')
plt.show()

2.3. Tutorials 135

Pyinterpolate, Release 0.5.1

Visual inspection shows that:

The circular model and the exponential model have created the smoothest results. An interesting pattern
emerges on uncertainty maps. The variance errors are smoother on the first map (the circular model).
The middle map produces a higher variance in output, but it still works as a filter. The last model doesn’t
perform well, has too strict distance constraints, and the final outcome is not smooth. Sharply increasing
variance errors on the uncertainty map of the cubic model tell us that maybe we have chosen the wrong
model - we are not able to retrieve meaningful information from it.

Are absolute errors between maps large or not? Let’s check it in the last step:

136 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

[14]: for pcol1 in preds_cols:
print('Column:', pcol1)
for pcol2 in preds_cols:

if pcol1 == pcol2:
pass

else:
mad = gdf_pts[pcol1] - gdf_pts[pcol2]
mad = np.abs(np.mean(mad))
print(f'Mean Absolute Difference with {pcol2} is {mad:.4f}')

print('')

Column: p sph 4
Mean Absolute Difference with p sph 8 is 0.2395
Mean Absolute Difference with p sph 16 is 0.6387

Column: p sph 8
Mean Absolute Difference with p sph 4 is 0.2395
Mean Absolute Difference with p sph 16 is 0.3993

Column: p sph 16
Mean Absolute Difference with p sph 4 is 0.6387
Mean Absolute Difference with p sph 8 is 0.3993

That differences are tiny, so we shouldn’t throw away one model after another. Semivariogram models are comparable.
I prefer the 8-lag theoretical variogram with an exponential model, and it has the best bias-to-variance ratio and a low
RMSE error.

2.3. Tutorials 137

Pyinterpolate, Release 0.5.1

Changelog

Date Change description Author
2023-
08-
23

The tutorial was refreshed and set along with the 0.5.0 version of the package @SimonMolin-
sky

2023-
04-
15

Tutorial updated for the 0.4.1 version of the package @SimonMolin-
sky

2022-
11-
05

Tutorial updated for the 0.3.5 version of the package @SimonMolin-
sky

2022-
10-
21

Tutorial updated for the 0.3.4 version of the package @SimonMolin-
sky

2022-
08-
23

Tutorial updated for the 0.3.0 version of the package @SimonMolin-
sky

2021-
12-
14

Sill selection was upgraded: now optimal sill is derived from the grid search within
TheoreticalSemivariogram class

@SimonMolin-
sky

2021-
12-
13

Changed behavior of select_values_in_range() function @SimonMolin-
sky

2021-
12-
06

Behavior of prepare_kriging_data() function has changed @SimonMolin-
sky

2021-
10-
13

Refactored TheoreticalSemivariogram (name change of class attribute) and refac-
tored calc_semivariance_from_pt_cloud() functions to protect calculations from
NaN's.

@ethmtrgt &
@SimonMolin-
sky

2021-
05-
11

Refactored TheoreticalSemivariogram class @SimonMolin-
sky

2021-
03-
31

Update related to the change of semivariogram weighting. Updated cancer rates data. @SimonMolin-
sky

[]:

C.1.2 Semivariogram Regularization

Table of Contents:

1. Prepare areal and point data,

2. Set semivariogram parameters,

3. Perform regularization,

4. Visualize regularized semivariogram and analyze algorithm performance,

5. Export semivariogram to json.

138 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Introduction

We will learn how to regularize a semivariogram of a dataset that consists of irregularly shaped polygons. The procedure
of the semivariogram regularization is described here: (1) Goovaerts P., Kriging and Semivariogram Deconvolution in
the Presence of Irregular Geographical Units, Mathematical Geology 40(1), 101-128, 2008.

The main idea is to retrieve the point support semivariogram from the semivariogram of blocks of different shapes
and sizes. This is the case in the mining industry, where aggregated blocks are deconvoluted into smaller units, and in
epidemiology, where data is aggregated over big administrative units. Or in ecology, where species observations are
aggregated over areas or time windows.

In this tutorial, we use block data of Breast Cancer incidence rates in Northeastern counties of the U.S. and U.S. Census
2010 data for population blocks.

The breast cancer rates data and the point support population counts are in the geopackage in a directory:
samples/regularization/cancer_data.gpkg.

Import packages

[1]: from pyinterpolate import build_experimental_variogram, Blocks, PointSupport,␣
→˓Deconvolution

1) Prepare areal and point data

Data structures for semivariogram regularization are rather complex, and that’s why Pyinterpolate has classes to pre-
pare this data for processing. There are two structures:

1. Blocks(): stores polygon and block data, transforms it, and retrieves centroids,

2. PointSupport(): performs spatial joins between polygons and points support data and manages internal in-
dexing of those datasets.

A researcher can prepare data manually - the Deconvolution class processes Dict, numpy array, or DataFrame
types of objects. For more data types and how to prepare them, we can look at the API documentation.

[2]: DATASET = 'samples/regularization/cancer_data.gpkg'
OUTPUT = 'samples/regularization/regularized_variogram.json'
POLYGON_LAYER = 'areas'
POPULATION_LAYER = 'points'
POP10 = 'POP10'
GEOMETRY_COL = 'geometry'
POLYGON_ID = 'FIPS'
POLYGON_VALUE = 'rate'

[3]: blocks = Blocks()
blocks.from_file(DATASET, value_col=POLYGON_VALUE, index_col=POLYGON_ID, layer_
→˓name=POLYGON_LAYER)

point_support = PointSupport()
point_support.from_files(point_support_data_file=DATASET,

blocks_file=DATASET,
point_support_geometry_col=GEOMETRY_COL,
point_support_val_col=POP10,

(continues on next page)

2.3. Tutorials 139

https://pyinterpolate.readthedocs.io/en/latest/api/datatypes/core.html

Pyinterpolate, Release 0.5.1

(continued from previous page)

blocks_geometry_col=GEOMETRY_COL,
blocks_index_col=POLYGON_ID,
use_point_support_crs=True,
point_support_layer_name=POPULATION_LAYER,
blocks_layer_name=POLYGON_LAYER)

ERROR 1: PROJ: proj_create_from_database: Open of /home/szymon/miniconda3/envs/
→˓pyinterpolate38/share/proj failed

2) Set semivariogram parameters

Now, we must set parameters for the areal semivariogram AND point semivariogram. It is essential to understand data
well to set the variogram parameters properly. That’s why you should always check the experimental semivariograms
of block data and its point support. We do it for prepared areal and point datasets.

The step size and the maximum search radius parameters depend on the block data. But we should check the point’s
semivariogram too. We won’t create meaningful results if point support data is spatially independent.

[4]: # Check experimental semivariogram of areal data - this cell may be run multiple times
before you find optimal parameters

maximum_range = 300000
step_size = 40000

dt = blocks.data[[blocks.cx, blocks.cy, blocks.value_column_name]] # x, y, val
exp_semivar = build_experimental_variogram(input_array=dt, step_size=step_size, max_
→˓range=maximum_range)

Plot experimental semivariogram

exp_semivar.plot()

140 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

[5]: # Check experimental semivariogram of point data - this cell may be run multiple times
before you find optimal parameters

maximum_point_range = 300000
step_size_points = 20000

pt = point_support.point_support[[point_support.x_col, point_support.y_col, point_
→˓support.value_column]].values
exp_semivar = build_experimental_variogram(input_array=pt, step_size=step_size, max_
→˓range=maximum_range)

Plot experimental semivariogram

exp_semivar.plot()

We see that block and point support variograms follow a spatial-dependency pattern. In this case, we can move to
the next step - deconvolution. The next step is to create the Deconvolution object. We have multiple parameters to
choose from, and it is hard to find the best fit initially, so try to avoid multiple loops because it is time-consuming.

The program is designed to first fit() the model and later to transform() it. There is a way to perform both steps
simultaneously with the fit_transform() method. However, I encourage you to divide the process into two parts
because transformation can take a long time to end. It is better to check how the model behaves after the first iteration
(fit()) rather than wait until the end of processing.

When you fit() a model, you have multiple parameters to control, but only a few are necessary for regular
purposes (in bold): - agg_dataset: Blocks with aggregated data. Blocks() class object or GeoDataFrame
and DataFrame with columns: centroid.x, centroid.y, ds, index or numpy array: [[block index,
centroid x, centroid y, value]]. - point_support_dataset : PointSupport() object, or Dict: {block
id: [[point x, point y, value]]}, or numpy array: [[block id, x, y, value]], or DataFrame and
GeoDataFrame: columns={x, y, ds, index}. - agg_step_size : Step size between lags. - agg_max_range :
Maximal distance of analysis. - agg_nugget : The nugget of semivariogram. We will set it to 0. - agg_direction : Di-
rection of semivariogram, values from 0 to 360 degrees. - agg_tolerance : (see docs). - variogram_weighting_method

2.3. Tutorials 141

Pyinterpolate, Release 0.5.1

: Method used to weight error at a given lags. Available methods: * equal: no weighting, * closest: Lags at a close
range have bigger weights, * distant: lags that further away have bigger weights, * dense: error is weighted by the
number of point pairs within a lag - more pairs, smaller weight. - model_name: the name of the semivariogram func-
tion. Two terms aggregate multiple models: all and safe, and the latter is recommended to use. - model_types :
semivariogram model types to test. You can pass here a list of theoretical models.

We will weight lags, and we do not store semivariograms and semivariogram models.

After fitting, we perform transform(). This function has few parameters to control the regularization process, but
we leave them as default with one exception: we set the max_iters parameter to 5.

This process of fitting and transforming takes some time, so it’s a good idea to run it and do something else. . .

3) Regularize semivariogram

[6]: reg_mod = Deconvolution(verbose=True)

[7]: reg_mod.fit(agg_dataset=blocks,
point_support_dataset=point_support,
agg_step_size=step_size,
agg_max_range=maximum_range,
agg_nugget=0.,
variogram_weighting_method='closest',
model_name='safe')

Regularization fit process starts
Regularization fit process ends

[8]: # Check initial experimental, theoretical and regularized semivariograms

reg_mod.plot_variograms()

142 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

After the first step, we see that the variogram can be regularized. There is a big difference between the theoretical curve
and the experimental values. Let’s run the transformation process.

[9]: reg_mod.transform(max_iters=5)

Transform procedure starts

100%|| 5/5 [00:18<00:00, 3.74s/it]

4) Visualize and check semivariogram

The process is fully automatic, but we can check how it behaved through each iteration. We can analyze deviation
change (the most important variable, the mean absolute difference between regularized and theoretical models) with
the built-in method. Still, if you are more interested in the algorithm stability, you can also analyze weight change over
each iteration.

[10]: # First analyze deviation

reg_mod.plot_deviations()

Clarification: The deviation between a regularized semivariogram and a theoretical model decreases. However, a sig-
nificant improvement can be seen after the first step, and then it slows down. That’s why semivariogram regularization
usually does not require many steps. However, if there are many lags, optimization may require more steps to achieve
a meaningful result.

[11]: # Check weights - it is important to track problems with algorithm, esepcially if sum of␣
→˓weights is oscillating
then it may be a sign of problems with data, model or (hopefully not!) algorithm␣
→˓itself.

reg_mod.plot_weights()

2.3. Tutorials 143

Pyinterpolate, Release 0.5.1

NOTE: Weights are smaller with each iteration. It is the expected behavior of the algorithm. The general trend goes
downward, and small oscillations may occur due to the optimization process.

The most important part is to compare semivariograms! You can see that the Regularized Model is different from the
initial semivariogram. It is the result of regularization. The population (point support) is considered in the cases of
variogram development and further kriging interpolation.

[12]: reg_mod.plot_variograms()

The regularized model works well for our dataset and follows general trends. It assigns smaller weights for closest

144 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

lags, and for more significant distances, weights are bigger. It is related to the semivariogram weighting method - we
penalize more poorly performing models for the shortest distances from the origin.

5) Export semivariogram to text file

[13]: # Export semivariogram to the text file. This is important step because calculations are␣
→˓slow...
and it is better to not repeat them.
We will use built-in method: export_model() where we pass only filename and our␣
→˓semivariogram
parameters are stored for other tasks.
reg_mod.export_model('output/regularized_model.json')

Where to go from here?

• C.1.3 Poisson Kriging Centroid-based

• C.1.4 Poisson Kriging Area to Area

• C.1.5 Poisson Kriging Area to Point

2.3. Tutorials 145

Pyinterpolate, Release 0.5.1

Changelog

Date Change description Author
2023-
08-24

The tutorial was refreshed and set along with the 0.5.0 version of the package @Simon-
Molinsky

2023-
04-15

Tutorial debugged and updated to the 0.4.1 version of the package @Simon-
Molinsky

2022-
11-05

Tutorial updated for the 0.3.5 version of the package @Simon-
Molinsky

2022-
10-08

Update for the 0.3.4 version of the package @Simon-
Molinsky

2022-
10-17

Updated variogram models selection (0.3.3 version of the package) @Simon-
Molinsky

2022-
10-08

Update for the 0.3.2 version of the package @Simon-
Molinsky

2022-
08-27

Update for the 0.3.0 version of the package @Simon-
Molinsky

2021-
12-14

Sill selection was upgraded: now optimal sill is derived from the grid search within
TheoreticalSemivariogram class

@Simon-
Molinsky

2021-
12-13

Changed behavior of select_values_in_range() function @Simon-
Molinsky

2021-
05-28

Updated paths for input/output data @Simon-
Molinsky

2021-
05-11

Refactored TheoreticalSemivariogram class @Simon-
Molinsky

2021-
04-04

Ranges parameter removed from regularize semivariogram class @Simon-
Molinsky

2021-
03-31

Update related to the change of semivariogram weighting. Updated cancer rates data. @Simon-
Molinsky

[13]:

C.1.3 Poisson Kriging - centroid based approach

Table of Contents:

1. Load areal and point data,

2. Load semivariogram (regularized),

3. Remove 10% of areal dataset,

4. Predict values at unknown locations,

5. Analyse Forecast Bias and Root Mean Squared Error of prediction.

146 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Introduction

Before starting this tutorial, be sure you have understood concepts in the Ordinary and Simple Kriging and Semi-
variogram Regularization tutorials.

The Poisson Kriging technique is used to model spatial count data. We will analyze a particular case where values are
counted over blocks, and those blocks may have irregular shapes and sizes. We will try to predict the breast cancer
rates in the Northeastern counties of the U.S. We will use U.S. Census 2010 data to create point support for blocks.

The breast cancer rates data and the point support population counts are located in the geopackage in a
directory: samples/regularization/cancer_data.gpkg

Even if our areal data has units with irregular shapes and sizes, for the case of this tutorial, we assume that each region
may be represented by its centroid. This is a huge simplification; we can do it at our own risk. There are cases when
we can use this method instead of the Area-to-Area Kriging. Those cases are:

• We must do our calculations fast, and the processing time is crucial,

• or blocks have similar shapes and sizes.

Centroid-based Poisson Kriging is much faster than Area-to-Area or Area-to-Point Poisson Kriging, and for some
applications, it may be the desired property.

The tutorial covers the following steps:

1. Read and explore data,

2. Load semivariogram model,

3. Prepare training and test data,

4. Predict values of unknown locations and calculate forecast bias and root mean squared error,

5. Analyze error metrics.

1) Read and explore data

[1]: import numpy as np
import pandas as pd

from pyinterpolate import TheoreticalVariogram
from pyinterpolate import Blocks, PointSupport
from pyinterpolate import centroid_poisson_kriging

[2]: DATASET = 'samples/regularization/cancer_data.gpkg'
OUTPUT = 'samples/regularization/regularized_variogram.json'
POLYGON_LAYER = 'areas'
POPULATION_LAYER = 'points'
POP10 = 'POP10'
GEOMETRY_COL = 'geometry'
POLYGON_ID = 'FIPS'
POLYGON_VALUE = 'rate'

blocks = Blocks()
blocks.from_file(DATASET, value_col=POLYGON_VALUE, index_col=POLYGON_ID, layer_
→˓name=POLYGON_LAYER)

(continues on next page)

2.3. Tutorials 147

Pyinterpolate, Release 0.5.1

(continued from previous page)

point_support = PointSupport()
point_support.from_files(point_support_data_file=DATASET,

blocks_file=DATASET,
point_support_geometry_col=GEOMETRY_COL,
point_support_val_col=POP10,
blocks_geometry_col=GEOMETRY_COL,
blocks_index_col=POLYGON_ID,
use_point_support_crs=True,
point_support_layer_name=POPULATION_LAYER,
blocks_layer_name=POLYGON_LAYER)

ERROR 1: PROJ: proj_create_from_database: Open of /home/szymon/miniconda3/envs/
→˓pyinterpolate38/share/proj failed

[3]: # Lets take a look into a map of areal counts

blocks.data.plot(column=blocks.value_column_name, cmap='Spectral_r', legend=True,␣
→˓figsize=(12, 8))

[3]: <Axes: >

148 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Clarification: It is a good idea to look into the spatial patterns in a dataset and to visually check if our data do not have
any NaN values. We use the geopandas GeoDataFrame.plot() function with a color map that diverges regions based
on the cancer incidence rates. The output choropleth map is not ideal, and (probably) it has a few unreliable results,
for example:

• In counties with a small population, where the ratio number of cases to population size is high even if the number
of cases is low,

• Counties that are very big and sparsely populated may draw more of our attention than densely populated counties,

• Transitions of colors (rates) between counties may be too abrupt, even if we know that neighboring counties
should have closer results.

We can overcome those problems using Centroid-based Poisson Kriging for filtering and denoising. But we must be
aware that this method introduces a bias: each polygon falls into its centroid, but polygons’ shapes and sizes differ, so
centroid representation erases spatial patterns.

2.3. Tutorials 149

Pyinterpolate, Release 0.5.1

2) Load semivariogram model

We load a regularized semivariogram from the tutorial about Semivariogram Regularization. You can always perform
semivariogram regularization along with the Poisson Kriging, but it is a very long process, and it is more convenient
to separate those two steps.

[4]: semivariogram = TheoreticalVariogram() # Create TheoreticalSemivariogram object
semivariogram.from_json('output/regularized_model.json') # Load regularized␣
→˓semivariogram

3) Prepare training and test data.

We simply remove 40% of random ID’s from the areal dataset (the same for points) and create four arrays: two training
arrays with areal and point geometry and values and two test arrays with the same categories of data.

[5]: # Remove 40% of rows (values) to test our model

def create_test_areal_set(areal_dataset: Blocks, points_dataset: PointSupport, frac=0.4):
"""

Parameters

areal_dataset : Blocks
points_dataset : PointSupport
frac : float

Returns

: List

[[training_areas, test_areas, training_points, test_points]]
equal to:

[np.ndarray, np.ndarray, np.ndarray, np.ndarray]
where:

- areas: [[block index, centroid x, centroid y, value]]
- point support: [[block id, x, y, value]]

"""
block_id_col = areal_dataset.index_column_name
block_data = areal_dataset.data.copy()
all_ids = block_data[block_id_col].unique()
training_set_size = int(len(all_ids) * (1 - frac))

training_ids = np.random.choice(all_ids,
size=training_set_size,
replace=False)

training_areas = block_data[block_data[block_id_col].isin(training_ids)]
training_areas = training_areas[[block_id_col, 'centroid_x', 'centroid_y', areal_

→˓dataset.value_column_name]].values
test_areas = block_data[~block_data[block_id_col].isin(training_ids)]
test_areas = test_areas[[block_id_col, 'centroid_x', 'centroid_y', areal_dataset.

→˓value_column_name]].values

(continues on next page)

150 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

ps_data = points_dataset.point_support.copy()
ps_ids = points_dataset.block_index_column

training_points = ps_data[ps_data[ps_ids].isin(training_ids)]
training_points = training_points[[ps_ids,

points_dataset.x_col,
points_dataset.y_col,
points_dataset.value_column]].values

test_points = ps_data[~ps_data[ps_ids].isin(training_ids)]
test_points = test_points[[ps_ids,

points_dataset.x_col,
points_dataset.y_col,
points_dataset.value_column]].values

output = [training_areas, test_areas, training_points, test_points]
return output

ar_train, ar_test, pt_train, pt_test = create_test_areal_set(blocks, point_support)

4) Predict values at unknown locations and calculate forecast bias and root mean squared error.

You may start to work with predictions with a fitted semivariogram model. Centroid-based Poisson Kriging takes five
arguments during the run:

• semivariogram model (fitted semivariogram model),

• known areas (training set),

• known points (training set),

• unknown block (without rate value),

• unknown block’s point support.

Additional two parameters control the process of interpolation:

• number of observations (the most critical parameter - how many neighbors are affecting your area of analysis),

• weighted by population (bool parameter, if True, then distances are weighted by population between points -
default is True for Poisson Kriging).

The algorithm in the cell below iteratively picks one area from the test set and performs prediction. Then, forecast bias,
the difference between actual and predicted value, is calculated. Forecast Bias clarifies if our algorithm predictions are
too low or too high (under- or overestimation). The following parameter is the Root Mean Squared Error. This measure
tells us more about outliers and huge differences between predictions and actual values. We will see it in the last part
of the tutorial.

Your work with Poisson Kriging (or Kriging) will usually be the same: - Prepare training and test data, - use training
data to train the semivariogram model, - Test different hyperparameters with a test set to find the optimal number of
neighbors that are affecting your area of analysis, - predict values at unseen locations OR perform data smoothing.

[6]: number_of_obs = 4

predslist = []
for unknown_area in ar_test:

(continues on next page)

2.3. Tutorials 151

Pyinterpolate, Release 0.5.1

(continued from previous page)

upts = pt_test[pt_test[:, 0] == unknown_area[0]]
upts = upts[:, 1:]
try:

kriging_preds = centroid_poisson_kriging(semivariogram_model=semivariogram,
blocks=ar_train,
point_support=pt_train,
unknown_block=unknown_area[:-1],
unknown_block_point_support=upts,
number_of_neighbors=number_of_obs,
is_weighted_by_point_support=True,
raise_when_negative_prediction=True,
raise_when_negative_error=True)

except ValueError as _:
predslist.append([unknown_area[0], np.nan, np.nan, np.nan, np.nan])

else:
rmse = np.sqrt((kriging_preds[1] - unknown_area[-1])**2)
fb = unknown_area[-1] - kriging_preds[1]
kriging_preds.extend([rmse, fb])
predslist.append(kriging_preds)

[7]: # [unknown block index, prediction, error, rmse, fb]
predslist = np.array(predslist)
pred_df = pd.DataFrame(data=predslist[:, 1:],

index=predslist[:, 0],
columns=['predicted', 'err', 'rmse', 'fb']) # Store results in␣

→˓DataFrame

5) Analyze Forecast Bias and Root Mean Squared Error of prediction

The analysis of errors is the last analysis step. We plot two histograms: forecast bias and root mean squared error then
we calculate the base statistics of a dataset.

[8]: # Show histograms of errors

pred_df['fb'].plot.hist(bins=10)

[8]: <Axes: ylabel='Frequency'>

152 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

[9]: pred_df['rmse'].plot.hist(bins=10)

[9]: <Axes: ylabel='Frequency'>

2.3. Tutorials 153

Pyinterpolate, Release 0.5.1

[10]: pred_df.describe()

[10]: predicted err rmse fb
count 83.000000 83.000000 83.000000 83.000000
mean 132.867622 8.825592 9.745322 -1.017020
std 10.440986 2.751169 8.013841 12.621576
min 105.681428 1.156868 0.002419 -30.980696
25% 125.629770 7.266978 4.105316 -8.052315
50% 133.459074 8.893322 7.967837 -0.281428
75% 138.548781 10.717209 12.820111 7.643090
max 161.959004 14.974212 32.017309 32.017309

Clarification: Analysis of Forecast Bias and Root Mean Squared Error - their distribution and basic properties
- could be a handy tool to analyze model performance. However, consider that the table above is a single test case
(realization) and can be misleading. The good idea is to repeat the test dozens of times with a different training/test set
division each time. After this, we average results from multiple tests and get insight into our model’s behavior.

Note 1: Those results are not decisive. Our sample has been selected randomly, and there is a chance that it is not a
spatially representative sample! (E.g., areas only from one region). The good idea is to repeat the experiment multiple
times with other samples and average results to determine how well the model performs.

Note 2: If we analyze errors’ statistics, we should consider not only an error’s mean value. Let’s look at different pieces
of information:

• Histograms clearly show us how dispersed and grouped errors are, and most importantly, we directly see the
worst predictions and how many of them are generated by our model.

• What is plotted on a histogram is described by statistics. We may check the max and the min error, but the true
power comes when we analyze quartiles and standard deviation.

154 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• The standard deviation is a good measurement of our model’s variance; the less, the better.

• Sometimes, we must look into quartiles. A very high mean but relatively low median (or even the 3rd quartile)
indicates that we have only a few wrong predictions, most of which are acceptable.

Where to go from here?

• C.1.4 Poisson Kriging Area to Area

• C.1.5 Poisson Kriging Area to Point

Changelog

Date Change description Author
2023-
08-25

The tutorial was refreshed and set along with the 0.5.0 version of the package @Simon-
Molinsky

2023-
01-16

New centroid-based PK algorithm @Simon-
Molinsky

2022-
10-21

Tutorial updated for the 0.3.4 version of the package @Simon-
Molinsky

2022-
08-27

Tutorial updated for the 0.3.0 version of the package @Simon-
Molinsky

2021-
12-14

Sill selection was upgraded: now optimal sill is derived from the grid search within
TheoreticalSemivariogram class

@Simon-
Molinsky

2021-
12-13

Changed behavior of select_values_in_range() function @Simon-
Molinsky

2021-
12-11

Behavior of prepare_kriging_data() function has benn changed @Simon-
Molinsky

2021-
05-28

Updated paths for input/output data @Simon-
Molinsky

2021-
05-11

Refactored TheoreticalSemivariogram class @Simon-
Molinsky

2021-
03-31

Update related to the change of semivariogram weighting. Updated cancer rates data. @Simon-
Molinsky

[10]:

Poisson Kriging - Area to Area Kriging

Table of Contents:

1. Load areal and point data,

2. Load semivariogram (regularized),

3. Remove 40% of areal dataset,

4. Predict values at unknown locations,

5. Analyse Forecast Bias and Root Mean Squared Error of prediction.

2.3. Tutorials 155

Pyinterpolate, Release 0.5.1

Introduction

Before starting this tutorial, be sure you have understood concepts in the Ordinary and Simple Kriging and Semi-
variogram Regularization tutorials.

The Poisson Kriging technique is used to model spatial count data. We will analyze a particular case where values are
counted over blocks, and those blocks may have irregular shapes and sizes. We will try to predict the breast cancer
rates in the Northeastern counties of the U.S. We will use U.S. Census 2010 data to create point support for blocks.

The breast cancer rates data and the point support population counts are located in the geopackage in a
directory: samples/regularization/cancer_data.gpkg

In tutorial Poisson Kriging - Centroid based approach, we’ve assumed that all areas have the same size and shape.
It is not a valid statement. We now use the Area-to-Area Kriging technique to predict and evaluate missing values.

Area-to-Area and Area-to-Point Poisson Kriging are slower than simplified Kriging with Centroids but give more
reliable results because they are tuned to areal size and shape.

This tutorial covers the following steps:

1. Read and explore data,

2. Load semivariogram model,

3. Prepare training and test data,

4. Predict values of unknown locations and calculate forecast bias and root mean squared error,

5. Analyze error metrics.

1) Read and explore data

[1]: import numpy as np
import pandas as pd

from pyinterpolate import TheoreticalVariogram
from pyinterpolate import Blocks, PointSupport
from pyinterpolate import area_to_area_pk

[2]: DATASET = 'samples/regularization/cancer_data.gpkg'
OUTPUT = 'samples/regularization/regularized_variogram.json'
POLYGON_LAYER = 'areas'
POPULATION_LAYER = 'points'
POP10 = 'POP10'
GEOMETRY_COL = 'geometry'
POLYGON_ID = 'FIPS'
POLYGON_VALUE = 'rate'

blocks = Blocks()
blocks.from_file(DATASET, value_col=POLYGON_VALUE, index_col=POLYGON_ID, layer_
→˓name=POLYGON_LAYER)

point_support = PointSupport()
point_support.from_files(point_support_data_file=DATASET,

blocks_file=DATASET,
point_support_geometry_col=GEOMETRY_COL,

(continues on next page)

156 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

point_support_val_col=POP10,
blocks_geometry_col=GEOMETRY_COL,
blocks_index_col=POLYGON_ID,
use_point_support_crs=True,
point_support_layer_name=POPULATION_LAYER,
blocks_layer_name=POLYGON_LAYER)

ERROR 1: PROJ: proj_create_from_database: Open of /home/szymon/miniconda3/envs/
→˓pyinterpolate38/share/proj failed

[3]: # Lets take a look into a map of areal counts

blocks.data.plot(column=blocks.value_column_name, cmap='Spectral_r', legend=True,␣
→˓figsize=(12, 8))

[3]: <Axes: >

2.3. Tutorials 157

Pyinterpolate, Release 0.5.1

Clarification: It is a good idea to investigate the spatial patterns in a dataset and to visually check if our data do not
have any NaN values. We use the geopandas GeoDataFrame.plot() function with a color map that diverges regions
based on the cancer incidence rates. The output choropleth map is not ideal, and (probably) it has a few unreliable
results, for example:

• In counties with a small population, where the ratio number of cases to population size is high even if the number
of cases is low,

• Counties that are very big and sparsely populated may draw more of our attention than densely populated counties,

• Transitions of colors (rates) between counties may be too abrupt, even if we know that neighboring counties
should have closer results.

We can overcome those problems using Area-to-Area Kriging for filtering and denoising. But, in this tutorial, we will
interpolate with Area-to-Area Kriging and analyze root mean squared errors of predictions and their bias.

2) Load a semivariogram model

We load a regularized semivariogram from the tutorial about Semivariogram Regularization. You can always perform
semivariogram regularization along with the Poisson Kriging, but it is a very long process, and it is more convenient
to separate those two steps.

[4]: semivariogram = TheoreticalVariogram() # Create TheoreticalSemivariogram object
semivariogram.from_json('output/regularized_model.json') # Load regularized␣
→˓semivariogram

3) Prepare training and test data.

We simply remove 40% of random ID’s from the areal dataset (the same for points) and create four arrays: two training
arrays with areal and point geometry and values and two test arrays with the same categories of data.

[5]: # Remove 40% of rows (values) to test our model

def create_test_areal_set(areal_dataset: Blocks, points_dataset: PointSupport, frac=0.4):
"""

Parameters

areal_dataset : Blocks
points_dataset : PointSupport
frac : float

Returns

: List

[[training_areas, test_areas, training_points, test_points]]
equal to:

[np.ndarray, np.ndarray, np.ndarray, np.ndarray]
where:

- areas: [[block index, centroid x, centroid y, value]]
- point support: [[block id, x, y, value]]

"""
block_id_col = areal_dataset.index_column_name

(continues on next page)

158 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

block_data = areal_dataset.data.copy()
all_ids = block_data[block_id_col].unique()
training_set_size = int(len(all_ids) * (1 - frac))

training_ids = np.random.choice(all_ids,
size=training_set_size,
replace=False)

training_areas = block_data[block_data[block_id_col].isin(training_ids)]
training_areas = training_areas[[block_id_col, 'centroid_x', 'centroid_y', areal_

→˓dataset.value_column_name]].values
test_areas = block_data[~block_data[block_id_col].isin(training_ids)]
test_areas = test_areas[[block_id_col, 'centroid_x', 'centroid_y', areal_dataset.

→˓value_column_name]].values

ps_data = points_dataset.point_support.copy()
ps_ids = points_dataset.block_index_column

training_points = ps_data[ps_data[ps_ids].isin(training_ids)]
training_points = training_points[[ps_ids,

points_dataset.x_col,
points_dataset.y_col,
points_dataset.value_column]].values

test_points = ps_data[~ps_data[ps_ids].isin(training_ids)]
test_points = test_points[[ps_ids,

points_dataset.x_col,
points_dataset.y_col,
points_dataset.value_column]].values

output = [training_areas, test_areas, training_points, test_points]
return output

ar_train, ar_test, pt_train, pt_test = create_test_areal_set(blocks, point_support)

4) Predict values at unknown locations and calculate forecast bias and root mean squared error.

You may start to work with predictions with a fitted semivariogram model. Centroid-based Poisson Kriging takes five
arguments during the run:

• semivariogram model (fitted semivariogram model),

• known areas (training set),

• known points (training set),

• unknown block (without rate value),

• unknown block’s point support.

Additional two parameters control the process of interpolation:

• number of observations (the most critical parameter - how many neighbors are affecting your area of analysis),

2.3. Tutorials 159

Pyinterpolate, Release 0.5.1

• weighted by population (bool parameter, if True, then distances are weighted by population between points -
default is True for Poisson Kriging).

The algorithm in the cell below iteratively picks one area from the test set and performs prediction. Then, forecast bias,
the difference between actual and predicted value, is calculated. Forecast Bias clarifies if our algorithm predictions are
too low or too high (under- or overestimation). The following parameter is the Root Mean Squared Error. This measure
tells us more about outliers and huge differences between predictions and actual values. We will see it in the last part
of the tutorial.

Your work with Poisson Kriging (or Kriging) will usually be the same: - Prepare training and test data, - use training
data to train the semivariogram model, - Test different hyperparameters with a test set to find the optimal number of
neighbors that are affecting your area of analysis, - predict values at unseen locations OR perform data smoothing.

[6]: number_of_obs = 6

predslist = []
for unknown_area in ar_test:

upts = pt_test[pt_test[:, 0] == unknown_area[0]]
upts = upts[:, 1:]
[unknown block index, prediction, error]
try:

kriging_preds = area_to_area_pk(
semivariogram_model=semivariogram,
blocks=ar_train,
point_support=pt_train,
unknown_block=unknown_area[:-1],
unknown_block_point_support=upts,
number_of_neighbors=number_of_obs,
raise_when_negative_prediction=True,
raise_when_negative_error=True

)
except ValueError:

predslist.append([unknown_area[0], np.nan, np.nan, np.nan, np.nan])
else:

rmse = np.sqrt((kriging_preds[1] - unknown_area[-1])**2)
fb = unknown_area[-1] - kriging_preds[1]
kriging_preds.extend([rmse, fb, unknown_area[-1]])
predslist.append(kriging_preds)

[7]: kriged_predictions = np.array(predslist)
pred_df = pd.DataFrame(data=kriged_predictions[:, 1:],

index=kriged_predictions[:, 0],
columns=['predicted', 'err', 'rmse', 'fb', 'real']) # Store␣

→˓results in DataFrame

160 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

5) Analyze Forecast Bias and Root Mean Squared Error of prediction

The last step is the analysis of errors. We plot two histograms: forecast bias and root mean squared error then we
calculate the base statistics of a dataset.

[8]: # Show histograms of errors

pred_df['fb'].plot.hist(bins=10)

[8]: <Axes: ylabel='Frequency'>

[9]: pred_df['rmse'].plot.hist(bins=10)

[9]: <Axes: ylabel='Frequency'>

2.3. Tutorials 161

Pyinterpolate, Release 0.5.1

[10]: pred_df.describe()

[10]: predicted err rmse fb real
count 87.000000 87.000000 87.000000 87.000000 87.000000
mean 131.695080 9.173880 8.432769 -0.656000 131.039080
std 7.766279 1.247393 6.342679 10.570369 11.372287
min 118.399540 5.898166 0.117618 -30.138693 98.100000
25% 126.024124 8.471337 4.251209 -6.904058 122.100000
50% 131.509964 9.102989 6.860562 -0.349700 131.500000
75% 135.699627 9.913730 10.960136 6.406806 140.000000
max 157.267297 12.248617 30.138693 24.448021 155.300000

Clarification: Analysis of Forecast Bias and Root Mean Squared Error - their distribution and basic properties
- could be a handy tool to analyze model performance. However, consider that the table above is a single test case
(realization) and can be misleading. The good idea is to repeat the test dozens of times with a different training/test set
division each time. After this, we average results from multiple tests and get insight into our model’s behavior.

Note 1: Those results are not decisive. Our sample has been selected randomly, and there is a chance that it is not a
spatially representative sample! (E.g., areas only from one region). The good idea is to repeat the experiment multiple
times with other samples and average results to determine how well the model performs.

Note 2: If we analyze errors’ statistics, we should consider not only an error’s mean value. Let’s look at different pieces
of information:

• Histograms clearly show us how dispersed and grouped errors are, and most importantly, we directly see the
worst predictions and how many of them are generated by our model.

• What is plotted on a histogram is described by statistics. We may check the max and the min error, but the true
power comes when we analyze quartiles and standard deviation.

162 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• The standard deviation is a good measurement of our model’s variance; the less, the better.

• Sometimes, we must look into quartiles. A very high mean but relatively low median (or even the 3rd quartile)
indicates that we have only a few wrong predictions, most of which are acceptable.

Where to go from here?

• C.1.5 Poisson Kriging Area to Point

Changelog

Date Change description Author
2023-
08-25

The tutorial was refreshed and set along with the 0.5.0 version of the package @Simon-
Molinsky

2023-
01-14

New area-to-area PK algorithm @Simon-
Molinsky

2022-
10-21

The tutorial was updated for the 0.3.4 version of the package @Simon-
Molinsky

2022-
08-27

The tutorial was updated for the 0.3.0 version of the package @Simon-
Molinsky

2021-
12-14

Sill selection was upgraded: now optimal sill is derived from the grid search within
TheoreticalSemivariogram class

@Simon-
Molinsky

2021-
12-13

Changed behavior of select_values_in_range() function @Simon-
Molinsky

2021-
12-11

Behavior of prepare_kriging_data() function has benn changed @Simon-
Molinsky

2021-
05-28

Updated paths for input/output data @Simon-
Molinsky

2021-
05-11

Refactored TheoreticalSemivariogram class @Simon-
Molinsky

2021-
03-31

Update related to the change of semivariogram weighting. Updated cancer rates data. @Simon-
Molinsky

[10]:

Poisson Kriging - Area to Point Kriging

Table of Contents:

1. Load areal and point data,

2. Load semivariogram (regularized),

3. Build point-based map of better spatial resolution.

2.3. Tutorials 163

Pyinterpolate, Release 0.5.1

Introduction

To start this tutorial, it is required to understand concepts in the Ordinary and Simple Kriging and Semivariogram
Regularization tutorials. The good idea is to end Poisson Kriging - Centroid based and Poisson Kriging - Area to
Area tutorials before this one.

The Poisson Kriging technique is used to model spatial count data. We are analyzing a particular case where data is
counted over areas. Those areas may have irregular shapes and sizes because they represent administrative regions.

We will transform the areal rates of Breast Cancer in the Northeastern US counties into representative population blocks
(point support).

The breast cancer rates data and the point support population counts are in the geopackage in a directory:
samples/regularization/cancer_data.gpkg.

The tutorial covers the following steps:

1. Read and explore data,

2. Load semivariogram model,

3. Perform Area to Point smoothing of areal data.

4. Visualize points.

1) Read and explore data

[1]: import numpy as np

from pyinterpolate import TheoreticalVariogram
from pyinterpolate import Blocks, PointSupport
from pyinterpolate import smooth_blocks

[2]: DATASET = 'samples/regularization/cancer_data.gpkg'
OUTPUT = 'samples/regularization/regularized_variogram.json'
POLYGON_LAYER = 'areas'
POPULATION_LAYER = 'points'
POP10 = 'POP10'
GEOMETRY_COL = 'geometry'
POLYGON_ID = 'FIPS'
POLYGON_VALUE = 'rate'

blocks = Blocks()
blocks.from_file(DATASET, value_col=POLYGON_VALUE, index_col=POLYGON_ID, layer_
→˓name=POLYGON_LAYER)

point_support = PointSupport()
point_support.from_files(point_support_data_file=DATASET,

blocks_file=DATASET,
point_support_geometry_col=GEOMETRY_COL,
point_support_val_col=POP10,
blocks_geometry_col=GEOMETRY_COL,
blocks_index_col=POLYGON_ID,
use_point_support_crs=True,
point_support_layer_name=POPULATION_LAYER,

(continues on next page)

164 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

blocks_layer_name=POLYGON_LAYER)

Let's take a look into a map of areal counts

blocks.data.plot(column=blocks.value_column_name, cmap='plasma', vmax=200, legend=True,␣
→˓figsize=(12, 8))

ERROR 1: PROJ: proj_create_from_database: Open of /home/szymon/miniconda3/envs/
→˓pyinterpolate38/share/proj failed

[2]: <Axes: >

Clarification: It is a good idea to look into the spatial patterns in a dataset and to visually check if our data do not have
any NaN values. We use the geopandas GeoDataFrame.plot() function with a color map that diverges regions based
on the cancer incidence rates. The output choropleth map is not ideal, and (probably) it has a few unreliable results,
for example:

2.3. Tutorials 165

Pyinterpolate, Release 0.5.1

• In counties with a small population, where the ratio number of cases to population size is high even if the number
of cases is low,

• Counties that are very big and sparsely populated may draw more of our attention than densely populated counties,

• Transitions of colors (rates) between counties may be too abrupt, even if we know that neighboring counties
should have closer results.

We can overcome those problems using Area-to-Point Kriging. A deconvoluted choropleth map is smoother than the
colored polygon representation, and the mapping does not include places where the population is equal to zero.

2) Load semivariogram model

In this step, we load regularized semivariogram from the tutorial Semivariogram Regularization. You can always
perform semivariogram regularization along with the Poisson Kriging, but it is a very long process, and it is more
convenient to separate those two steps.

[3]: semivariogram = TheoreticalVariogram() # Create TheoreticalSemivariogram object
semivariogram.from_json('output/regularized_model.json') # Load regularized␣
→˓semivariogram

3) Perform Area to Point smoothing of areal data.

The process of map smoothing is straightforward. We use the smooth_blocks() function and pass a block and its
point support into it. We pass into the function two interesting parameters:

• The number_of_neighbors (the most crucial parameter - how many neighbors are affecting your analysis area).

• The CRS (Coordinate Reference System). We may leave it as None, but then returned GeoDataFrame won’t have
CRS. Be careful! The function doesn’t check if passed CRS is valid for given blocks and point support!

The method returns GeoDataFrame with points and predicted values. It iteratively re-calculates each area risk and
produces predictions per point. In Area-to-Area Kriging, those predictions are aggregated. We leave them and use
them as a smooth map of areal risk.

[4]: smoothed = smooth_blocks(semivariogram_model=semivariogram,
blocks=blocks,
point_support=point_support,
number_of_neighbors=16,
max_range=10000,
crs=blocks.data.crs,
raise_when_negative_error=False,
raise_when_negative_prediction=True)

100%|| 217/217 [00:43<00:00, 5.03it/s]

[5]: smoothed.head()

[5]: area id geometry pred err
0 25019.0 POINT (2117322.312 556124.507) 0.085944 1.048220
1 25019.0 POINT (2134642.820 556124.507) 146.811399 4.084356
2 36121.0 POINT (1424501.989 556124.507) 5.246010 8.495757
3 36121.0 POINT (1424501.989 546124.507) 6.088192 8.518457
4 36121.0 POINT (1433162.243 561124.507) 18.819513 8.828136

166 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

4) Visualize data

The last step is data visualization. We use a choropleth map from the GeoPandas package, but you can store a smoothed
map to a spatial file of points and process it in a different place or with specific software (in our idea, the best for it is
QGIS).

[6]: base = blocks.data.plot(figsize=(14, 14), color='white', edgecolor='black')
smooth_plot_data = smoothed.copy()
smooth_plot_data[smooth_plot_data['pred'] < 0.1] = np.nan
smooth_plot_data.plot(ax=base, column='pred', cmap='plasma', legend=True, markersize=30,␣
→˓alpha=0.7)

[6]: <Axes: >

2.3. Tutorials 167

Pyinterpolate, Release 0.5.1

Changelog

Date Change description Author
2023-
08-25

The tutorial was refreshed and set along with the 0.5.0 version of the package @Simon-
Molinsky

2023-
01-16

New area-to-point PK algorithm @Simon-
Molinsky

2022-
10-21

The tutorial was updated for the 0.3.4 version of the package @Simon-
Molinsky

2022-
08-27

The tutorial was updated for the 0.3.0 version of the package @Simon-
Molinsky

2021-
12-14

Sill selection was upgraded: now optimal sill is derived from the grid search within
TheoreticalSemivariogram class

@Simon-
Molinsky

2021-
12-13

Changed behavior of select_values_in_range() function @Simon-
Molinsky

2021-
12-11

Behavior of prepare_kriging_data() function has benn changed @Simon-
Molinsky

2021-
05-28

Updated paths for input/output data @Simon-
Molinsky

2021-
05-11

Refactored TheoreticalSemivariogram class @Simon-
Molinsky

2021-
03-31

Update related to the change of semivariogram weighting. Updated cancer rates data. @Simon-
Molinsky

[6]:

2.4 How to cite

Moliński, S., (2022). Pyinterpolate: Spatial interpolation in Python for point measurements and aggregated datasets.
Journal of Open Source Software, 7(70), 2869, https://doi.org/10.21105/joss.02869

2.5 API

2.5.1 Core data structures

class Blocks

Class stores and prepares aggregated data.

168 Chapter 2. Contents

https://doi.org/10.21105/joss.02869

Pyinterpolate, Release 0.5.1

Examples

>>> geocls = Blocks()
>>> geocls.from_file('testfile.shp', value_col='val', geometry_col='geometry',␣
→˓index_col='idx')
>>> parsed_columns = geocls.data.columns
>>> print(list(parsed_columns))
(idx, val, geometry, centroid.x, centroid.y)

Attributes
data

[gpd.GeoDataFrame] Dataset with block values.

value_column_name
[Any] Name of the column with block rates.

geometry_column_name
[Any] Name of the column with a block geometry.

index_column_name
[Any] Name of the column with the index.

Methods

from_file() Reads and parses data from spatial file supported by GeoPandas.
from_geodataframe() Reads and parses data from GeoPandas GeoDataFrame.

from_file(fpath, value_col, geometry_col='geometry', index_col=None, layer_name=None, **kwargs)
Loads areal dataset from a file supported by GeoPandas.

Parameters
fpath

[str] Path to the spatial file with appropriate extension such as .shp,

``.gpkg``, ``.feather``, or ``.parquet``.
value_col

[Any] The name of a column with values.

geometry_col
[default=’geometry’] The name of a column with blocks.

index_col
[default = None] Index column name. It could be any unique value from a dataset. If not
given then index is taken from the index array of GeoDataFrame, and it is named 'index'.

layer_name
[Any, default = None] The name of a layer with data if provided input is a gpkg file.

**kwargs
[Any] Additional kwargs parameters passed to the geopandas.read_file(),
geopandas.read_feather() or geopandas.read_parquet() functions.

Raises
IndexColNotUniqueError

Raised when given index column has not unique values.

2.5. API 169

Pyinterpolate, Release 0.5.1

from_geodataframe(gdf , value_col, geometry_col='geometry', index_col=None)
Loads areal dataset from a GeoDataFrame supported by GeoPandas.

Parameters
gdf

[gpd.GeoDataFrame]

value_col
[Any] The name of a column with values.

geometry_col
[Any, default = ‘geometry’] The name of a column with blocks.

index_col
[Any, default = None] If set then a specific column is treated as an index.

Raises
IndexColNotUniqueError

Given index column values are not unique.

class PointSupport(log_not_used_points=False)
Class prepares the point support data in relation to block dataset.

Parameters
log_not_used_points

[bool, default=False] Should dropped points be logged?

Notes

The PointSupport class structure is designed to store the information about the points within polygons. During the
regularization process, the inblock variograms are estimated from the polygon’s point support, and semivariances
are calculated between point supports of neighbouring blocks.

The class takes population grid (support) and blocks data (polygons). Then, spatial join is performed and
points are assigned to areas within they are placed. The core attribute is point_support - GeoDataFrame
with columns:

• x_col - a floating representation of longitude,

• y_col - a floating representation of latitude,

• value_column - the attribute which describes the name of a column with the point-support’s value,

• geometry_column - the attribute which describes the name of a geometry column with Point() repre-
sentation of the point support coordinates,

• block_index_column - the name of a column which directs to the block index values.

170 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Examples

>>> import geopandas as gpd
>>> from pyinterpolate import PointSupport
>>>
>>>
>>> POPULATION_DATA = "path to the point support file"
>>> POLYGON_DATA = "path to the polygon data"
>>> GEOMETRY_COL = "geometry"
>>> POP10 = "POP10"
>>> POLYGON_ID = "FIPS"
>>>
>>> gdf_points = gpd.read_file(POPULATION_DATA)
>>> gdf_polygons = gpd.read_file(POLYGON_DATA)
>>> point_support = PointSupport()
>>> out = point_support.from_geodataframes(gdf_points,
... gdf_polygons,
... point_support_geometry_col=GEOMETRY_COL,
... point_support_val_col=POP10,
... blocks_geometry_col=GEOMETRY_COL,
... blocks_index_col=POLYGON_ID)

Attributes
point_support

[gpd.GeoDataFrame] Dataset with point support values and indexes of blocks (where points
fall into).

value_column
[str] The value column name

geometry_column
[str] The geometry column name.

block_index_column
[str] The area index.

x_col
[str, default = “x_col”] Longitude column name.

y_col
[str, default = “y_col”] Latitude column name.

log_dropped
[bool] See log_not_used_points parameter.

2.5. API 171

Pyinterpolate, Release 0.5.1

Methods

from_files() Loads point support and polygon data from files.
from_geodataframes() Loads point support and polygon data from dataframe.

from_files(point_support_data_file, blocks_file, point_support_geometry_col, point_support_val_col,
blocks_geometry_col, blocks_index_col, use_point_support_crs=True,
point_support_layer_name=None, blocks_layer_name=None, **kwargs)

Methods prepares the point support data from files.

Parameters
point_support_data_file

[str] Path to the file with point support data. Reads all files processed by the GeoPandas
with appropriate extension such as .shp, .gpkg, .feather, or .parquet.

blocks_file
[str] Path to the file with polygon data. Reads all files processed by GeoPandas with appro-
priate extension such as .shp,

``.gpkg``, ``.feather``, or ``.parquet``.
point_support_geometry_col

[Any] The name of the point support geometry column.

point_support_val_col
[Any] The name of the point support column with values.

blocks_geometry_col
[Any] The name of the polygon geometry column.

blocks_index_col
[Any] The name of polygon’s index column (must be unique!).

use_point_support_crs
[bool, default = True] If set to False then the point support crs is transformed to the same
crs as polygon dataset.

point_support_layer_name
[Any, default = None] If provided file is .gpkg then this parameter must be provided.

blocks_layer_name
[Any, default = None] If provided file is .gpkg then this parameter must be provided.

**kwargs
[Any] Additional kwargs parameters passed to the geopandas.read_file(),
geopandas.read_feather() or geopandas.read_parquet() functions.

from_geodataframes(point_support_dataframe, blocks_dataframe, point_support_geometry_col,
point_support_val_col, blocks_geometry_col, blocks_index_col,
use_point_support_crs=True)

Methods prepares the point support data from files.

Parameters
point_support_dataframe

[GeoDataFrame or GeoSeries]

blocks_dataframe
[GeoDataFrame] Block data with block indexes and geometries.

172 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

point_support_geometry_col
[Any] The name of the point support geometry column.

point_support_val_col
[Any] The name of the point support column with values.

point_support_val_col
[Any] The name of the point support column with values.

blocks_geometry_col
[Any] The name of the polygon geometry column.

blocks_index_col
[Any] The name of polygon’s index column (must be unique!).

use_point_support_crs
[bool, default = True] If set to False then the point support crs is transformed to the same
crs as polygon dataset.

2.5.2 Input / Output

read_block(path, val_col_name, geometry_col_name='geometry', id_col_name=None, centroid_col_name=None,
epsg=None, crs=None, **kwargs)

Function reads block data from files supported by geopandas.

Value column name must be provided. If geometry column has different name than ‘geometry’ then it must be
provided too. ID column name is optional, if not given then GeoDataFrame index is treated as an id column.
Optional parameters are epsg and crs. If any is set then data is reprojected into a specific crs/epsg.` Function
returns GeoDataFrame with columns: [id, value, geometry, centroid].

Parameters
path

[str] Path to the file with appropriate extension such as .shp, .gpkg, .feather, or .
parquet.

val_col_name
[str] Name of the value column (header title).

geometry_col_name
[str, default=’geometry’] Name of the column with polygons.

id_col_name: str or None, default=None, optional
Name of the colum with unique indexes.

centroid_col_name: str or None, default=None
Name of the column with block centroid. Centroids are calculated from MultiPolygon or
Polygon later on but their accuracy may be limited. For most applications it does not matter.

epsg
[str or None, default=None] If provided then GeoDataFrame projection is set to it. You
should choose if you provide EPSG or CRS.

crs
[str or None, default=None] If provided then GeoDataFrame projection is set to it. You
should choose if you provide CRS or EPSG.

**kwargs
[Any] Additional kwargs parameters passed to the geopandas.read_file(), geopandas.
read_feather() or geopandas.read_parquet() functions.

2.5. API 173

Pyinterpolate, Release 0.5.1

Returns
gpd

[GeoDataFrame] Returned output has columns: ['id', 'geometry', 'value',
'centroid'].

Raises
TypeError

EPSG and CRS are provided both (should be only one).

TypeError
Provided column name does not exist in a dataset.

Examples

>>> bblock = 'path_to_the_shapefile.shp'
>>> bdf = read_block(bblock, val_col_name='rate', id_col_name='id')
>>> print(bdf.columns)
Index(['id', 'geometry', 'rate', 'centroid'], dtype='object')

read_csv(path, val_col_name, lat_col_name, lon_col_name, delim=',')
Function reads data from a csv file.

Provided data should include: latitude, longitude, value.

Parameters
path

[str] Path to the file.

val_col_name
[str] Name of the value column (header title).

lat_col_name
[str] Name of the latitude column (header title).

lon_col_name
[str] Name of the longitude column (header title).

delim
[str, default=’,’] Delimiter that separates columns.

Returns
data_arr

[numpy array]

174 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Examples

>>> path_to_the_data = 'path_to_the_data.csv'
>>> data = read_csv(path_to_the_data, val_col_name='value', lat_col_name='y', lon_
→˓col_name='x')
>>> print(data[:2, :])
[

[15.11524 52.76515 91.275597]
[15.11524 52.74279 96.548294]

]

read_txt(path, delim=',', skip_header=True)
Function reads data from a text file.

Provided data format should include: longitude (x), latitude (y), value. Function converts data into numpy
array.

Parameters
path

[str] Path to the file.

delim
[str, default=’,’] Delimiter that separates columns.

skip_header
[bool, default=True] Skips the first row of a file if set to True.

Returns
data_arr

[numpy array]

Examples

>>> path_to_the_data = 'path_to_the_data.txt'
>>> data = read_txt(path_to_the_data, skip_header=False)
>>> print(data[:2, :])
[

[15.11524 52.76515 91.275597]
[15.11524 52.74279 96.548294]

]

2.5.3 Distance calculations

point_distance(points, other, metrics='euclidean')
Calculates the euclidean distance from one group of points to another group of points.

Parameters
points

[array] Spatial coordinates.

2.5. API 175

Pyinterpolate, Release 0.5.1

other
[array] Other array with spatial coordinates.

metrics
[str, default = ‘euclidean’] Metrics used to calculate distance. See scipy.spatial.
distance.cdist for more details.

Returns
distances

[array] Distances matrix. Row index = points point index, and column index = other point
index.

Notes

The function creates array of size MxN, where M = number of points and N = number of other. Very big
array with coordinates may cause a memory error.

Examples

>>> points = [(0, 0), (0, 1), (0, 2)]
>>> other = [(2, 2), (3, 3)]
>>> distances = point_distance(points=points, other=other)
>>> print(distances)
[[2.82842712 4.24264069]
[2.23606798 3.60555128]
[2. 3.16227766]]

calc_block_to_block_distance(blocks)
Function calculates distances between blocks.

Parameters
blocks

[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

The point support of polygons.
• Dict: {block id: [[point x, point y, value]]},

• numpy array: [[block id, x, y, value]],

• DataFrame and GeoDataFrame: columns={x, y, ds, index},

• PointSupport.

Returns
block_distances

[Dict] Ordered block ids (the order from the list of distances): {block id : [distances to
other]}.

Raises
TypeError

Wrong input’s data type.

176 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

deprecated

calc_point_to_point_distance(points_a, points_b=None)
Function calculates distances between two group of points of a single group to itself.

Parameters
points_a

[numpy array] The point coordinates.

points_b
[numpy array, default=None] Other point coordinates. If provided then algorithm calculates
distances between points_a against points_b.

Returns
distances

[numpy array] The distances from each point from the points_a to other point (from the
same points_a or from the other set of points points_b).

Deprecated since version 0.5.1: This will be removed in 1.0. Use point_distance() instead

2.5.4 Gridding

create_grid(ds, min_number_of_cells, grid_type='box')
Function creates grid based on a set of points.

Parameters
ds

[Union[np.ndarray, List, gpd.GeoSeries]] Data to be transformed, point coordinates [x, y]
<-> [lon, lat] or GeoSeries with Point geometry.

min_number_of_cells
[int] Expected number of cells in the smaller dimension.

grid_type
[str, default = “square”] Available types: box, hex.

Returns
grid

[gpd.GeoSeries] Empty grid that can be used to aggregate points. It is GeoSeries of Polygons
(squares or hexes).

points_to_grid(points, grid, fillna=None)
Function aggregates points over a specified grid.

Parameters
points

[geopandas GeoDataFrame]

grid
[geopandas GeoSeries]

fillna
[Any, optional] The value to fill NaN’s, if None given then this step is skipped.

Returns

2.5. API 177

Pyinterpolate, Release 0.5.1

aggregated
[geopandas GeoDataFrame]

2.5.5 Variogram

Experimental

build_experimental_variogram(input_array, step_size, max_range, weights=None, direction=None,
tolerance=1, method='t')

Function prepares:
• experimental semivariogram,

• experimental covariogram,

• variance.

Parameters
input_array

[numpy array] Spatial coordinates and their values: [pt x, pt y, value] or [shapely.
Point(), value].

step_size
[float] The distance between lags within each points are included in the calculations.

max_range
[float] The maximum range of analysis.

weights
[numpy array or None, optional, default=None] Weights assigned to points, index of weight
must be the same as index of point.

direction
[float (in range [0, 360]), optional] Direction of semivariogram, values from 0 to 360 degrees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

tolerance
[float (in range [0, 1]), default = 1] If tolerance is 0 then points must be placed at a single
line with the beginning in the origin of the coordinate system and the direction given by y
axis and direction parameter. If tolerance is > 0 then the bin is selected as an elliptical
area with major axis pointed in the same direction as the line for 0 tolerance:

• the major axis size == step_size,

• the minor axis size is tolerance * step_size,

• the baseline point is at a center of the ellipse,

• the tolerance == 1 creates an omnidirectional semivariogram.

method
[str, default = triangular] The method used for neighbors selection. Available methods:

178 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• “triangle” or “t”, default method where a point neighbors are selected from a triangular
area,

• “ellipse” or “e”, the most accurate method but also the slowest one.

Returns
semivariogram_stats

[EmpiricalSemivariogram] The class with empirical semivariogram, empirical covariogram
and a variance.

See also:

calculate_covariance
function to calculate experimental covariance and variance of a given set of points.

calculate_semivariance
function to calculate experimental semivariance from a given set of points.

EmpiricalSemivariogram
class that calculates and stores experimental semivariance, covariance and variance.

Notes

Function is an alias for EmpiricalSemivariogram class and it forces calculations of all spatial statistics from
a given dataset.

Examples

>>> import numpy as np
>>> REFERENCE_INPUT = np.array([
... [0, 0, 8],
... [1, 0, 6],
... [2, 0, 4],
... [3, 0, 3],
... [4, 0, 6],
... [5, 0, 5],
... [6, 0, 7],
... [7, 0, 2],
... [8, 0, 8],
... [9, 0, 9],
... [10, 0, 5],
... [11, 0, 6],
... [12, 0, 3]
...])
>>> STEP_SIZE = 1
>>> MAX_RANGE = 4
>>> empirical_smv = build_experimental_variogram(REFERENCE_INPUT, step_size=STEP_
→˓SIZE, max_range=MAX_RANGE)
>>> print(empirical_smv)
+-----+--------------------+---------------------+--------------------+
| lag | semivariance | covariance | var_cov_diff |
+-----+--------------------+---------------------+--------------------+
| 1.0 | 4.625 | -0.543 | 4.792 |

(continues on next page)

2.5. API 179

Pyinterpolate, Release 0.5.1

(continued from previous page)

| 2.0 | 5.227 | -0.795 | 5.043 |
| 3.0 | 6.0 | -1.26 | 5.509 |
+-----+--------------------+---------------------+--------------------+

build_variogram_point_cloud(input_array, step_size, max_range, direction=None, tolerance=1.0)

Function calculates lagged variogram point cloud. Variogram is calculated as a squared difference of
each point

against other point within range specified by step_size parameter.

Parameters
input_array

[numpy array] Spatial coordinates and their values: [pt x, pt y, value] or [shapely.
Point(), value].

step_size
[float] The distance between lags within each points are included in the calculations.

max_range
[float] The maximum range of analysis.

direction
[float (in range [0, 360]), default=None] Direction of semivariogram, values from 0 to 360
degrees: - 0 or 180: is E-W, - 90 or 270 is N-S, - 45 or 225 is NE-SW, - 135 or 315 is NW-SE.

tolerance
[float (in range [0, 1]), optional, default=1] If tolerance is 0 then points must be placed
at a single line with the beginning in the origin of the coordinate system and the direction
given by y axis and direction parameter. If tolerance is > 0 then the bin is selected as an
elliptical area with major axis pointed in the same direction as the line for 0 tolerance.

• The major axis size == step_size.

• The minor axis size is tolerance * step_size

• The baseline point is at a center of the ellipse.

• The tolerance == 1 creates an omnidirectional semivariogram.

Returns
variogram_cloud

[Dict] {Lag: array of semivariances within a given lag}

class ExperimentalVariogram(input_array, step_size, max_range, weights=None, direction=None,
tolerance=1.0, method='t', is_semivariance=True, is_covariance=True)

Class calculates Experimental Semivariogram and Experimental Covariogram of a given dataset.

Parameters
input_array

[numpy array, list, tuple]

• As a list and numpy array: coordinates and their values: (pt x, pt y, value),

180 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• as a dict: polyset = {'points': numpy array with coordinates and their
values},

• as a Blocks: Blocks.polyset['points'].

step_size
[float] The distance between lags within each points are included in the calculations.

max_range
[float] The maximum range of analysis.

weights
[numpy array, default=None] Weights assigned to points, index of weight must be the same
as index of point.

direction
[float (in range [0, 360]), optional] Direction of semivariogram, values from 0 to 360 degrees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

tolerance
[float (in range [0, 1]), default = 1] If tolerance is 0 then points must be placed at a single
line with the beginning in the origin of the coordinate system and the direction given by y
axis and direction parameter. If tolerance is > 0 then the bin is selected as an elliptical
area with major axis pointed in the same direction as the line for 0 tolerance.

• The major axis size == step_size.

• The minor axis size is tolerance * step_size

• The baseline point is at a center of the ellipse.

• The tolerance == 1 creates an omnidirectional semivariogram.

method
[str, default = triangular] The method used for neighbors selection. Available methods:

• “triangle” or “t”, default method where a point neighbors are selected from a triangular
area,

• “ellipse” or “e”, the most accurate method but also the slowest one.

is_semivariance
[bool, optional, default=True] Should semivariance be calculated?

is_covariance
[bool, optional, default=True] Should covariance be calculated?

See also:

calculate_covariance
function to calculate experimental covariance and variance of a given set of points.

calculate_semivariance
function to calculate experimental semivariance from a given set of points.

2.5. API 181

Pyinterpolate, Release 0.5.1

Examples

>>> import numpy as np
>>> REFERENCE_INPUT = np.array([
... [0, 0, 8],
... [1, 0, 6],
... [2, 0, 4],
... [3, 0, 3],
... [4, 0, 6],
... [5, 0, 5],
... [6, 0, 7],
... [7, 0, 2],
... [8, 0, 8],
... [9, 0, 9],
... [10, 0, 5],
... [11, 0, 6],
... [12, 0, 3]
...])
>>> STEP_SIZE = 1
>>> MAX_RANGE = 4
>>> empirical_smv = ExperimentalVariogram(REFERENCE_INPUT, step_size=STEP_SIZE, max_
→˓range=MAX_RANGE)
>>> print(empirical_smv)
+-----+--------------------+---------------------+--------------------+
| lag | semivariance | covariance | var_cov_diff |
+-----+--------------------+---------------------+--------------------+
| 1.0 | 4.625 | -0.5434027777777798 | 4.791923487836951 |
| 2.0 | 5.2272727272727275 | -0.7954545454545454 | 5.0439752555137165 |
| 3.0 | 6.0 | -1.2599999999999958 | 5.508520710059168 |
+-----+--------------------+---------------------+--------------------+

Attributes
input_array

[numpy array] The array with coordinates and observed values.

experimental_semivariance_array
[numpy array or None, optional, default=None] The array of semivariance per lag in the
form: (lag, semivariance, number of points within lag).

experimental_covariance_array
[numpy array or None, optional, default=None] The array of covariance per lag in the form:
(lag, covariance, number of points within lag).

experimental_semivariances
[numpy array or None, optional, default=None] The array of semivariances.

experimental_covariances
[numpy array or None, optional, default=None] The array of covariances.

variance_covariances_diff
[numpy array or None, optional, default=None] The array of differences $c(0) - c(h)$.

lags
[numpy array or None, default=None] The array of lags (upper bound for each lag).

182 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

points_per_lag
[numpy array or None, default=None] A number of points in each lag-bin.

variance
[float or None, optional, default=None] The variance of a dataset, if data is second-order
stationary then we are able to retrieve a semivariance s a difference between the variance and
the experimental covariance:

𝑔(ℎ) = 𝑐(0)− 𝑐(ℎ)

where:

• 𝑔(ℎ): semivariance at a given lag h,

• 𝑐(0): variance of a dataset,

• 𝑐(ℎ): covariance of a dataset.

Important! Have in mind that it works only if process is second-order stationary (variance
is the same for each distance bin) and if the semivariogram has the upper bound.

step
[float] Derived from the step_size parameter.

mx_rng
[float] Derived from the max_range parameter.

weights
[numpy array or None] Derived from the weights parameter.

direct: float
Derived from the direction parameter.

tol
[float] Derived from the tolerance parameter.

method
[str] See the method parameter.

Methods

plot() Shows experimental variances.

plot(plot_semivariance=True, plot_covariance=True, plot_variance=True)

Parameters
plot_semivariance

[bool, default=True] Show semivariance on a plot. If class attribute is_semivariance is
set to False then semivariance is not plotted and warning is printed.

plot_covariance
[bool, default=True] Show covariance on a plot. If class attribute is_covariance is set
to False then covariance is not plotted and warning is printed.

plot_variance
[bool, default=True] Show variance level on a plot.

Warns

2.5. API 183

Pyinterpolate, Release 0.5.1

AttributeSetToFalseWarning
Warning invoked when plotting parameter for semivariance, covariance or variance is set
to True but class attributes to calculate those indices are set to False.

class VariogramCloud(input_array, step_size, max_range, direction=0, tolerance=1,
calculate_on_creation=True)

Class calculates Variogram Point Cloud and presents it in a scatterplot, boxplot and violinplot.

Parameters
input_array

[numpy array] Spatial coordinates and their values: [pt x, pt y, value] or [shapely.
Point(), value].

step_size
[float] The distance between lags within each points are included in the calculations.

max_range
[float] The maximum range of analysis.

direction
[float (in range [0, 360]), optional, default=None] Direction of semivariogram, values from
0 to 360 degrees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

tolerance
[float (in range [0, 1]), optional, default=1] If tolerance is 0 then points must be placed
at a single line with the beginning in the origin of the coordinate system and the direction
given by y axis and direction parameter. If tolerance is > 0 then the bin is selected as an
elliptical area with major axis pointed in the same direction as the line for 0 tolerance.

• The major axis size == step_size.

• The minor axis size is tolerance * step_size

• The baseline point is at a center of the ellipse.

• The tolerance == 1 creates an omnidirectional semivariogram.

See also:

get_variogram_point_cloud
function to calculate variogram point cloud, class VariogramCloud is a wrapper around it.

ExperimentalVariogram
class that calculates experimental semivariogram, experimental covariogram and data variance.

184 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Examples

>>> import numpy as np
>>> REFERENCE_INPUT = np.array([
... [0, 0, 8],
... [1, 0, 6],
... [2, 0, 4],
... [3, 0, 3],
... [4, 0, 6],
... [5, 0, 5],
... [6, 0, 7],
... [7, 0, 2],
... [8, 0, 8],
... [9, 0, 9],
... [10, 0, 5],
... [11, 0, 6],
... [12, 0, 3]
...])
>>> STEP_SIZE = 1
>>> MAX_RANGE = 4
>>> point_cloud = VariogramCloud(REFERENCE_INPUT, step_size=STEP_SIZE, max_
→˓range=MAX_RANGE)
>>> print(point_cloud)
+-----+--------------------+---------------------+--------------------+
| lag | count | avg semivariance | std | min | 25% | median | 75
→˓% | max | skewness | kurtosis |
+-----+--------------------+---------------------+--------------------+
| 1.0 | 4.625 | -0.5434027777777798 | 4.791923487836951 |
| 2.0 | 5.22727272727272 | -0.7954545454545454 | 5.0439752555137165 |
| 3.0 | 6.0 | -1.2599999999999958 | 5.508520710059168 |
+-----+--------------------+---------------------+--------------------+

Attributes
input_array

[numpy array] The array with coordinates and observed values.

experimental_point_cloud
[dict or None, default=None] Dict {lag: [variances]}.

lags
[numpy array or None, default=None] The array of lags (upper bound for each lag).

points_per_lag
[int or None, default=None] A number of points in each lag-bin.

step
[float] Derived from the step_size parameter.

mx_rng
[float] Derived from the max_range parameter.

direct: float
Derived from the direction parameter.

tol
[float] Derived from the tolerance parameter.

2.5. API 185

Pyinterpolate, Release 0.5.1

calculate_on_creation
[bool, default=True] Perform calculations of semivariogram point cloud when object is ini-
tialized.

Methods

calcu-
late_experimental_variogram()

Method calculates experimental variogram from a point cloud.

describe() calculates statistics for point clouds. It is invoked by default by class
__str__() method.

plot(kind=’scatter’) plots scatterplot, boxplot or violinplot of a point cloud.
remove_outliers() Removes outliers from a semivariance scatterplots.

calculate_experimental_variogram()

Method transforms the experimental point cloud into the experimental variogram.

Raises
RunetimeError

The attribute experimental_point_cloud is not calculated.

describe()

Method calculates basic statistcs of a data: count (point pairs number), average semivariance, standard
deviation, minimum, 1st quartile, median, 3rd quartile, maximum, skewness, kurtosis.

Returns
statistics

[Dict]

>>> statistics = {
... lag_number:
... {
... 'count': point pairs count,
... 'avg semivariance': mean semivariance,
... 'std': standard deviation,
... 'min': minimal variance,
... '25%': first quartile of variances,
... 'median': second quartile of variances,
... '75%': third quartile of variances,
... 'max': max variance,
... 'skewness': skewness,
... 'kurtosis': kurtosis
... }
... }

plot(kind='scatter')
Method plots variogram point cloud.

Parameters
kind

[string, default=’scatter’] available plot types: ‘scatter’, ‘box’, ‘violin’

Returns

186 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

: bool
True if Figure was plotted.

remove_outliers(method='zscore', z_lower_limit=-3, z_upper_limit=3, iqr_lower_limit=1.5,
iqr_upper_limit=1.5, inplace=False)

Parameters
method

[str, default=’zscore’] Method used to detect outliers. Can be ‘zscore’ or ‘iqr’.

z_lower_limit
[float] Number of standard deviations from the mean to the left side of a distribution. Must
be lower than 0.

z_upper_limit
[float] Number of standard deviations from the mean to the right side of a distribution.
Must be greater than 0.

iqr_lower_limit
[float] Number of standard deviations from the 1st quartile into the lowest values. Must be
greater or equal to zero.

iqr_upper_limit
[float] Number of standard deviations from the 3rd quartile into the largest values. Must
be greater or equal to zero.

inplace
[bool, default=False] If set to True then method updates experimental_point_cloud attribute
of the existing object and returns nothing. Else new VariogramCloud object is returned.

Returns
cleaned

[VariogramCloud] VariogramCloud object with removed outliers from the experimen-
tal_point_cloud attribute.

Raises
RunetimeError

The attribute experimental_point_cloud is not calculated.

Theoretical

build_theoretical_variogram(experimental_variogram, model_name, sill, rang, nugget=0.0, direction=None)
Function is a wrapper into TheoreticalVariogram class and its fit() method.

Parameters
experimental_variogram

[ExperimentalVariogram]

model_name
[str] Available types:

• ‘circular’,

• ‘cubic’,

• ‘exponential’,

• ‘gaussian’,

2.5. API 187

Pyinterpolate, Release 0.5.1

• ‘linear’,

• ‘power’,

• ‘spherical’.

sill
[float] The value at which dissimilarity is close to its maximum if model is bounded. Other-
wise, it is usually close to observations variance.

rang
[float] The semivariogram range is a distance at which spatial correlation exists. It shouldn’t
be set at a distance larger than a half of a study extent.

nugget
[float, default=0.] The nugget parameter (bias at a zero distance).

direction
[float, in range [0, 360], default=None] The direction of a semivariogram. If None given
then semivariogram is isotropic.

Returns
theo

[TheoreticalVariogram] Fitted theoretical semivariogram model.

class TheoreticalVariogram(model_params=None)
Theoretical model of a spatial dissimilarity.

Parameters
model_params

[Dict, default=None] Dictionary with 'nugget', 'sill', 'range' and 'name' of the
model.

See also:

ExperimentalVariogram
class to calculate experimental variogram and more.

Examples

>>> import numpy
>>> REFERENCE_INPUT = numpy.array([
... [0, 0, 1],
... [1, 0, 2],
... [2, 0, 3],
... [3, 0, 4],
... [4, 0, 5],
... [5, 0, 6],
... [6, 0, 7],
... [7, 0, 5],
... [8, 0, 3],
... [9, 0, 1],
... [10, 0, 4],
... [11, 0, 6],

(continues on next page)

188 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

(continued from previous page)

... [12, 0, 8]

...])
>>> STEP_SIZE = 1
>>> MAX_RANGE = 4
>>> empirical_smv = ExperimentalVariogram(REFERENCE_INPUT, step_size=STEP_SIZE, max_
→˓range=MAX_RANGE)
>>> theoretical_smv = TheoreticalVariogram()
>>> _ = theoretical_smv.autofit(experimental_variogram=empirical_smv, model_name=
→˓'gaussian')
>>> print(theoretical_smv.rmse)
1.5275214898546217

Attributes
experimental_variogram

[EmpiricalVariogram, default=None] Empirical Variogram class and its attributes.

experimental_array
[numpy array, default=None] Empirical variogram in a form of numpy array.

variogram_models
[Dict] A dictionary with keys representing theoretical variogram models and values that are
pointing into a modeling functions. Available models:

• ‘circular’,

• ‘cubic’,

• ‘exponential’,

• ‘gaussian’,

• ‘linear’,

• ‘power’,

• ‘spherical’.

fitted_model
[numpy array or None] Trained theoretical model values. Array of [lag, variances].

name
[str or None, default=None] The name of the chosen model. Available names are the same
as keys in variogram_models attribute.

nugget
[float, default=0] The nugget parameter (bias at a zero distance).

sill
[float, default=0] A value at which dissimilarity is close to its maximum if model is bounded.
Otherwise, it is usually close to observations variance.

rang
[float, default=0] The semivariogram range is a distance at which spatial correlation exists.
It shouldn’t be set at a distance larger than a half of a study extent.

direction
[float, in range [0, 360], default=None] The direction of a semivariogram. If None given
then semivariogram is isotropic.

2.5. API 189

Pyinterpolate, Release 0.5.1

rmse
[float, default=0] Root mean squared error of the difference between the empirical observa-
tions and the modeled curve.

mae
[bool, default=True] Mean Absolute Error of a model.

bias
[float, default=0] Forecast Bias of the modeled variogram vs experimental points. Large
positive value means that the estimated model underestimates values. A large negative value
means that model overestimates predictions.

smape
[float, default=0] Symmetric Mean Absolute Percentage Error of the prediction - values from
0 to 100%.

spatial_dependency_ratio
[float, default = None] The ratio of nugget vs sill multiplied by 100. Levels from 0 to 25
indicate strong spatial dependency, from 25 to 75 moderate spatial dependency, from 75 to
95 weak spatial dependency, and above process is considered to be not spatially-depended.

spatial_dependency_strength
[str, default = “Unknown”]

Descriptive indicator of spatial dependency strength based on the
spatial_dependency_level. It could be:

• unknown if ratio is None,

• strong if ratio is below 25,

• moderate if ratio is between 25 and 75,

• weak if ratio is between 75 and 95,

• no spatial dependency if ratio is greater than 95.

are_params
[bool] Check if model parameters were given during initialization.

Methods

fit() Fits experimental variogram data into theoretical model.
autofit() The same as fit but tests multiple nuggets, ranges, sills and models.
calculate_model_error() Evaluates the model performance against experimental values.
to_dict() Store model parameters in a dict.
from_dict() Read model parameters from a dict.
to_json() Save model parameteres in a JSON file.
from_json() Read model parameters from a JSON file.
plot() Shows theoretical model.

autofit(experimental_variogram, model_name='safe', model_types=None, nugget=None, min_nugget=0,
max_nugget=0.5, number_of_nuggets=16, rang=None, min_range=0.1, max_range=0.5,
number_of_ranges=16, sill=None, min_sill=0.0, max_sill=1, number_of_sills=16, direction=None,
error_estimator='rmse', deviation_weighting='equal', auto_update_attributes=True,
warn_about_set_params=True, verbose=False, return_params=True)

Method tries to find the optimal range, sill and model (function) of the theoretical semivariogram.

Parameters

190 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

experimental_variogram
[ExperimentalVariogram] Prepared Empirical Variogram or array.

model_name
[str, default=’safe’] The name of the model to check or special command for multiple mod-
els. Available models:

• ‘all’ - the same as list with all models,

• ‘safe’ - [‘linear’, ‘power’, ‘spherical’],

• ‘circular’,

• ‘cubic’,

• ‘exponential’,

• ‘gaussian’,

• ‘linear’,

• ‘power’,

• ‘spherical’.

model_types
[List, default = None] The list with model names to check excluding ‘all’ and ‘safe’ names.

nugget
[float, optional] Nugget (bias) of a variogram. If given then it is fixed to this value.

min_nugget
[float, default = 0] The minimum nugget as the ratio of the parameter to the first lag vari-
ance.

max_nugget
[float, default = 0.5] The maximum nugget as the ratio of the parameter to the first lag
variance.

number_of_nuggets
[int, default = 16] How many equally spaced nuggets tested between min_nugget and
max_nugget.

rang
[float, optional] If given, then range is fixed to this value.

min_range
[float, default = 0.1] The minimal fraction of a variogram range, 0 < min_range <=
max_range.

max_range
[float, default = 0.5] The maximum fraction of a variogram range, min_range <=
max_range <= 1. Parameter max_range greater than 0.5 raises warning.

number_of_ranges
[int, default = 16] How many equally spaced ranges are tested between min_range and
max_range.

sill
[float, default = None] If given, then sill is fixed to this value.

min_sill
[float, default = 0] The minimal fraction of the variogram variance at lag 0 to find a sill, 0
<= min_sill <= max_sill.

2.5. API 191

Pyinterpolate, Release 0.5.1

max_sill
[float, default = 1] The maximum fraction of the variogram variance at lag 0 to find a sill.
It should be lower or equal to 1. It is possible to set it above 1, but then warning is printed.

number_of_sills
[int, default = 16] How many equally spaced sill values are tested between min_sill and
max_sill.

direction
[float, in range [0, 360], default=None] The direction of a semivariogram. If None given
then semivariogram is isotropic. This parameter is required if passed experimental vari-
ogram is stored in a numpy array.

error_estimator
[str, default = ‘rmse’] A model error estimation method. Available options are:

• ‘rmse’: Root Mean Squared Error,

• ‘mae’: Mean Absolute Error,

• ‘bias’: Forecast Bias,

• ‘smape’: Symmetric Mean Absolute Percentage Error.

deviation_weighting
[str, default = “equal”] The name of a method used to weight error at a given lags. Works
only with RMSE. Available methods:

• equal: no weighting,

• closest: lags at a close range have bigger weights,

• distant: lags that are further away have bigger weights,

• dense: error is weighted by the number of point pairs within a lag.

auto_update_attributes
[bool, default = True] Update sill, range, model type and nugget based on the best model.

warn_about_set_params: bool, default=True
Should class invoke warning if model parameters has been set during initialization?

verbose
[bool, default = False] Show iteration results.

return_params
[bool, default = True] Return model parameters.

Returns
model_attributes

[Dict] Attributes dict:

>>> {
... 'model_name': model_name,
... 'sill': model_sill,
... 'range': model_range,
... 'nugget': model_nugget,
... 'error_type': type_of_error_metrics,
... 'error value': error_value
... }

Raises

192 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

ValueError
Raised when sill < 0 or range < 0 or range > 1.

KeyError
Raised when wrong model name(s) are provided by the users.

KeyError
Raised when wrong error type is provided by the users.

Warns
SillOutsideSafeRangeWarning

Warning printed when max_sill > 1.

RangeOutsideSafeDistanceWarning
Warning printed when max_range > 0.5.

Warning
Model parameters were given during initilization but program is forced to fit the new set
of parameters.

Warning
Passed experimental_variogram is a numpy array and direction parameter is None.

calculate_model_error(fitted_values, rmse=True, bias=True, mae=True, smape=True,
deviation_weighting='equal')

Method calculates error associated with a difference between the theoretical model and the experimental
semivariogram.

Parameters
fitted_values

[numpy array] [lag, fitted value]

rmse
[bool, default=True] Root Mean Squared Error of a model.

bias
[bool, default=True] Forecast Bias of a model.

mae
[bool, default=True] Mean Absolute Error of a model.

smape
[bool, default=True] Symmetric Mean Absolute Percentage Error of a model.

deviation_weighting
[str, default = “equal”] The name of a method used to weight errors at a given lags. Works
only with RMSE. Available methods:

• equal: no weighting,

• closest: lags at a close range have bigger weights,

• distant: lags that are further away have bigger weights,

• dense: error is weighted by the number of point pairs within a lag.

Returns
model_errors

[Dict] Dict with error values per model: rmse, bias, mae, smape.

Raises

2.5. API 193

Pyinterpolate, Release 0.5.1

MetricsTypeSelectionError
User has set all error types to False.

fit(experimental_variogram, model_name, sill, rang, nugget=0.0, direction=None, update_attrs=True,
warn_about_set_params=True)

Parameters
experimental_variogram

[ExperimentalVariogram] Prepared Empirical Variogram.

model_name
[str] The name of the model to check. Available models:

• ‘circular’,

• ‘cubic’,

• ‘exponential’,

• ‘gaussian’,

• ‘linear’,

• ‘power’,

• ‘spherical’.

sill
[float, default=0] A value at which dissimilarity is close to its maximum if model is
bounded. Otherwise, it is usually close to observations variance.

rang
[float, default=0] The semivariogram range is a distance at which spatial correlation exists.
It shouldn’t be set at a distance larger than a half of a study extent.

nugget
[float, default=0.] Nugget parameter (bias at a zero distance).

direction
[float, in range [0, 360], default=None] The direction of a semivariogram. If None given
then semivariogram is isotropic. This parameter is required if passed experimental vari-
ogram is stored in a numpy array.

update_attrs
[bool, default=True] Should class attributes be updated?

warn_about_set_params: bool, default=True
Should class invoke warning if model parameters has been set during initialization?

Returns
_theoretical_values, _error: Tuple[numpy array, dict]
[theoretical semivariances, {'rmse bias smape mae'}]

Raises
KeyError

Model type (function) not implemented.

Warns
Warning

Model parameters were given during initialization but program is forced to fit the new set
of parameters.

194 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Warning
Passed experimental_variogram is a numpy array and direction parameter is None.

from_dict(parameters)
Method updates model with a given set of parameters.

Parameters
parameters

[Dict] Dictionary with model’s: 'name', 'nugget', 'sill', 'range',
'direction'.

from_json(fname)
Method reads data from a JSON file.

Parameters
fname

[str]

plot(experimental=True)
Method plots theoretical curve and (optionally) experimental scatter plot.

Parameters
experimental

[bool] Plot experimental observations.

Raises
AttributeError

Model is not fitted yet, nothing to plot.

predict(distances)
Method returns a semivariance per distance.

Parameters
distances

[np.ndarray]

Returns
predicted

[np.ndarray]

to_dict()

Method exports the theoretical variogram parameters to a dictionary.

Returns
model_parameters

[Dict] Dictionary with model’s 'name', 'nugget', 'sill', 'range' and 'direction'.

Raises
AttributeError

The model parameters have not been derived yet.

to_json(fname)
Method stores variogram parameters into a JSON file.

Parameters

2.5. API 195

Pyinterpolate, Release 0.5.1

fname
[str]

Block

class AggregatedVariogram(aggregated_data, agg_step_size, agg_max_range, point_support,
agg_direction=0, agg_tolerance=1, agg_nugget=0,
variogram_weighting_method='closest', verbose=False, log_process=False)

Class calculates semivariance of aggregated counts.

Parameters
aggregated_data

[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]] Blocks with aggregated
data.

• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid.x, centroid.y, ds,
index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

agg_step_size
[float] Step size between lags.

agg_max_range
[float] Maximal distance of analysis.

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

• Dict: {block id: [[point x, point y, value]]}

• numpy array: [[block id, x, y, value]]

• DataFrame and GeoDataFrame: columns = {x, y, ds, index}

• PointSupport

agg_direction
[float (in range [0, 360]), default=0] Direction of semivariogram, values from 0 to 360 de-
grees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

agg_tolerance
[float (in range [0, 1]), default=1] If agg_tolerance is 0 then points must be placed at a
single line with the beginning in the origin of the coordinate system and the direction given
by y axis and direction parameter. If agg_tolerance is > 0 then the bin is selected as an
elliptical area with major axis pointed in the same direction as the line for 0 tolerance.

• The major axis size == agg_step_size.

• The minor axis size is agg_tolerance * agg_step_size

• The baseline point is at a center of the ellipse.

196 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• agg_tolerance == 1 creates an omnidirectional semivariogram.

agg_nugget
[float, default = 0] The nugget of blocks data.

variogram_weighting_method
[str, default = “closest”] Method used to weight error at a given lags. Available methods:

• equal: no weighting,

• closest: lags at a close range have bigger weights,

• distant: lags that are further away have bigger weights,

• dense: error is weighted by the number of point pairs within a lag - more pairs, lesser
weight.

verbose
[bool, default = False] Print steps performed by the algorithm.

log_process
[bool, default = False] Log process info (Level DEBUG).

References

[1] Goovaerts P., Kriging and Semivariogram Deconvolution in the Presence of Irregular Geographical Units,
Mathematical Geology 40(1), 101-128, 2008

Attributes
aggregated_data

[Union[Blocks, Dict, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]] See
aggregared_data parameter.

agg_step_size
[float] See agg_step_size parameter.

agg_max_range
[float] See agg_max_range parameter.

agg_lags
[numpy array] Lags calculated as a set of equidistant points from agg_step_size to
agg_max_range with a step of size agg_step_size.

agg_tolerance
[float, default = 1] See agg_tolerance parameter.

agg_direction
[float, default = 0] See agg_direction parameter.

agg_nugget
[float, default = 0] See agg_nugget parameter.

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]] See the
point_support parameter.

weighting_method
[str, default = ‘closest’] See the variogram_weighting_method parameter.

verbose
[bool, default = False] See verbose parameter.

2.5. API 197

Pyinterpolate, Release 0.5.1

log_process
[bool, default = False] See the log_process parameter.

experimental_variogram
[ExperimentalVariogram] The experimental variogram calculated from blocks (their cen-
troids).

theoretical_model
[TheoreticalVariogram] The theoretical model derived from blocks’ centroids.

inblock_semivariance
[Dict] {area id: the average inblock semivariance}

avg_inblock_semivariance
[numpy array] [lag, average inblocks semivariances, number of blocks
within a lag]

block_to_block_semivariance
[Dict] {(block i, block j): [distance, semivariance, number of point
pairs between blocks]}

avg_block_to_block_semivariance
[numpy array] [lag, semivariance, number of point pairs between blocks].

regularized_variogram
[numpy array] [lag, semivariance]

distances_between_blocks
[Dict] Weighted distances between all blocks: {block id : [distances to other
blocks]}.

Methods

regularize() Method performs semivariogram regularization.
show_semivariograms()Shows experimental variogram, theoretical model, average inblock semivariance, average

block to block semivariance and regularized variogram.

calculate_avg_inblock_semivariance()

Method calculates the average semivariance within blocks 𝛾ℎ(𝑣, 𝑣). The average inblock semivariance is
calculated as:

𝛾ℎ(𝑣, 𝑣) =
1

(2 *𝑁(ℎ))

𝑁(ℎ)∑︁
𝑎=1

[𝛾(𝑣𝑎, 𝑣𝑎) + 𝛾(𝑣𝑎+ℎ, 𝑣𝑎+ℎ)]

where:

• 𝛾(𝑣𝑎, 𝑣𝑎) is a semivariance within a block 𝑎,

• 𝛾(𝑣𝑎+ℎ, 𝑣𝑎+ℎ) is samivariance within a block at a distance ℎ from the block 𝑎.

Returns
avg_inblock_semivariance

[numpy array] [lag, semivariance, number of block pairs]

calculate_avg_semivariance_between_blocks()

Function calculates semivariance between areas based on their division into smaller blocks. It is 𝛾(𝑣, 𝑣ℎ)
- semivariogram value between any two blocks separated by the distance h.

198 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Returns
avg_block_to_block_semivariance

[numpy array] The average semivariance between neighboring blocks point-supports:
[lag, semivariance, number of block pairs within a range].

Notes

Block-to-block semivariance is calculated as:

𝛾(𝑣𝑎, 𝑣𝑎+ℎ) =
1

𝑃𝑎𝑃𝑎+ℎ

𝑃𝑎∑︁
𝑠=1

𝑃𝑎+ℎ∑︁
𝑠′=1

𝛾(𝑢𝑠, 𝑢𝑠′)

where:

• 𝛾(𝑣𝑎, 𝑣𝑎+ℎ) - block-to-block semivariance of block 𝑎 and paired block 𝑎+ ℎ.

• 𝑃𝑎 and 𝑃𝑎+ℎ - number of support points within block 𝑎 and block 𝑎+ ℎ.

• 𝛾(𝑢𝑠, 𝑢𝑠′) - semivariance of point supports between blocks.

Then average block-to-block semivariance is calculated as:

𝛾ℎ(𝑣, 𝑣ℎ) =
1

𝑁(ℎ)

𝑁(ℎ)∑︁
𝑎=1

𝛾(𝑣𝑎, 𝑣𝑎+ℎ)

where:

• 𝛾ℎ(𝑣, 𝑣ℎ) - averaged block-to-block semivariances for a lag ℎ,

• 𝛾(𝑣𝑎, 𝑣𝑎+ℎ) - semivariance of block 𝑎 and paired block at a distance ℎ.

regularize(average_inblock_semivariances=None, semivariance_between_point_supports=None,
experimental_block_variogram=None, theoretical_block_model=None)

Method regularizes point support model. Procedure is described in [1].

Parameters
average_inblock_semivariances

[np.ndarray, default = None] The mean semivariance between the blocks. See Notes to
learn more.

semivariance_between_point_supports
[np.ndarray, default = None] Semivariance between all blocks calculated from the theoret-
ical model.

experimental_block_variogram
[np.ndarray, default = None] The experimental semivariance between area centroids.

theoretical_block_model
[TheoreticalVariogram, default = None] A modeled variogram.

Returns
regularized_model

[numpy array] [lag, semivariance, number of point pairs]

2.5. API 199

Pyinterpolate, Release 0.5.1

Notes

Function has the form:

𝛾𝑣(ℎ) = 𝛾(𝑣, 𝑣ℎ)− 𝛾ℎ(𝑣, 𝑣)

where:

• 𝛾𝑣(ℎ) - the regularized variogram,

• 𝛾(𝑣, 𝑣ℎ) - a variogram value between any two blocks separated by the distance ℎ (calculated from their
point support),

• 𝛾ℎ(𝑣, 𝑣) - average inblock semivariance between blocks.

Average inblock semivariance between blocks:

𝛾ℎ(𝑣, 𝑣) =
1

(2 *𝑁(ℎ))

𝑁(ℎ)∑︁
𝑎=1

[𝛾(𝑣𝑎, 𝑣𝑎) + 𝛾(𝑣𝑎+ℎ, 𝑣𝑎+ℎ)]

where 𝛾(𝑣𝑎, 𝑣𝑎) and 𝛾(𝑣𝑎+ℎ, 𝑣𝑎+ℎ) are inblock semivariances of block 𝑎 and block 𝑎+ ℎ separated by the
distance ℎ.

References

[1] Goovaerts P., Kriging and Semivariogram Deconvolution in the Presence of Irregular
Geographical Units,

Mathematical Geology 40(1), 101-128, 2008

regularize_variogram()

Function regularizes semivariograms.

Returns
reg_variogram

[numpy array] [lag, semivariance]

Raises
ValueError

Semivariance at a given lag is below zero.

Notes

Regularized semivariogram is a difference between the average block to block semivariance 𝛾(𝑣, 𝑣ℎ) and
the average inblock semivariances 𝛾ℎ(𝑣, 𝑣) at a given lag ℎ.

𝛾𝑣(ℎ) = 𝛾(𝑣, 𝑣ℎ)− 𝛾ℎ(𝑣, 𝑣)

show_semivariograms()

Method plots:

• experimental variogram,

• theoretical model,

• average inblock semivariance,

• average block-to-block semivariance,

200 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• regularized variogram.

Raises
AttributeError

The semivariogram regularization process has not been performed.

Deconvolution

class Deconvolution(verbose=True, store_models=False)
Class performs deconvolution of semivariogram of areal data. Whole procedure is based on the iterative process
described in: [1].

Steps to regularize semivariogram:

• initialize your object (no parameters),

• use fit() method to build initial point support model,

• use transform() method to perform semivariogram regularization,

• save deconvoluted semivariogram model with export_model() method.

References

[1] Goovaerts P., Kriging and Semivariogram Deconvolution in the Presence of Irregular Geographical Units,
Mathematical Geology 40(1), 101-128, 2008

Examples

>>> dcv = Deconvolution(verbose=True)
>>> dcv.fit(agg_dataset=...,
... point_support_dataset=...,
... agg_step_size=...,
... agg_max_range=...,
... variogram_weighting_method='closest')
>>> dcv.transform(max_iters=5)
>>> dcv.plot_variograms()
>>> dcv.plot_deviations()
>>> dcv.plot_weights()
>>> dcv.export_model('results.csv')

Attributes
ps

[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

• Dict: {block id: [[point x, point y, value]]}

• numpy array: [[block id, x, y, value]]

• DataFrame and GeoDataFrame: columns = {x, y, ds, index}

• PointSupport

2.5. API 201

Pyinterpolate, Release 0.5.1

agg
[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]] Blocks with aggregated
data.

• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid.x, centroid.y, ds,
index. Geometry column with polygons is not used and optional.

• numpy array: [[block index, centroid x, centroid y, value]].

initial_regularized_variogram
[numpy array] [lag, semivariance]

initial_theoretical_agg_model
[TheoreticalVariogram]

initial_theoretical_model_prediction
[numpy array] [lag, semivariance]

initial_experimental_variogram
[numpy array] [lag, semivariance, number of pairs]

final_theoretical_model
[TheoreticalVariogram]

final_optimal_variogram
[numpy array] [lag, semivariance]

agg_step
[float] Step size between lags.

agg_rng
[float] Maximal distance of analysis.

ranges
[numpy array] np.arange(agg_step, agg_rng, agg_step)

direction
[float (in range [0, 360])] Direction of semivariogram, values from 0 to 360 degrees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

tolerance
[float (in range [0, 1])] If tolerance is 0 then points must be placed at a single line with
the beginning in the origin of the coordinate system and the direction given by y axis and
direction parameter. If tolerance is > 0 then the bin is selected as an elliptical area with
major axis pointed in the same direction as the line for 0 tolerance.

• The major axis size == step_size.

• The minor axis size is tolerance * step_size

• The baseline point is at a center of the ellipse.

• The tolerance == 1 creates an omnidirectional semivariogram.

weighting_method
[str] Method used to weight error at a given lags. Available methods:

202 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• equal: no weighting,

• closest: lags at a close range have bigger weights,

• distant: lags that are further away have bigger weights,

• dense: error is weighted by the number of point pairs within a lag - more pairs, lesser
weight.

deviations
[List] List of deviations per iteration. The first element is the initial deviation.

weights
[List] List of weights applied to lags in each iteration.

verbose
[bool] Should algorithm print() process steps into a terminal.

store_models
[bool] Should theoretical and regularized models be stored after each iteration.

theoretical_models
[List] List with theoretical models parameters.

regularized_models
[List] List with numpy arrays with regularized models.

Methods

fit() Fits areal data and the point support data into a model, initializes the experimental semivari-
ogram, the theoretical semivariogram model, regularized point support model, and deviation.

trans-
form()

Performs semivariogram regularization.

fit_transform()Performs fit() and transform() at one time.
ex-
port_model()

Exports regularized (or fitted) model.

plot_variograms()Plots semivariances before and after regularization.
plot_deviations()Plots each deviation divided by the initial deviation.
plot_weights()Plots the mean weight value per lag.

export_model(fname)
Function exports final theoretical model.

Parameters
fname

[str] File name for model parameters (nugget, sill, range, model type)

Raises
RunetimeError

A model hasn’t been transformed yet.

fit(agg_dataset, point_support_dataset, agg_step_size, agg_max_range, agg_nugget=None,
agg_direction=None, agg_tolerance=1, variogram_weighting_method='closest', model_name='safe',
model_types=None)
Function fits given areal data variogram into point support variogram - it is the first step of regularization
process.

2.5. API 203

Pyinterpolate, Release 0.5.1

Parameters
agg_dataset

[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]] Blocks with aggregated
data.

• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid.x, centroid.y, ds,
index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

point_support_dataset
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

• Dict: {block id: [[point x, point y, value]]}

• numpy array: [[block id, x, y, value]]

• DataFrame and GeoDataFrame: columns = {x, y, ds, index}

• PointSupport

agg_step_size
[float] Step size between lags.

agg_max_range
[float] Maximal distance of analysis.

agg_nugget
[float, default = 0] The nugget of a data.

agg_direction
[float (in range [0, 360]), optional, default=0] Direction of semivariogram, values from 0
to 360 degrees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

agg_tolerance
[float (in range [0, 1]), optional, default=1] If agg_tolerance is 0 then points must be
placed at a single line with the beginning in the origin of the coordinate system and the
direction given by y axis and direction parameter. If agg_tolerance is > 0 then the bin
is selected as an elliptical area with major axis pointed in the same direction as the line for
0 tolerance.

• The major axis size == agg_step_size.

• The minor axis size is agg_tolerance * agg_step_size

• The baseline point is at a center of the ellipse.

• agg_tolerance == 1 creates an omnidirectional semivariogram.

variogram_weighting_method
[str, default = “closest”] Method used to weight error at a given lags. Available methods:

• equal: no weighting,

• closest: lags at a close range have bigger weights,

204 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• distant: lags that are further away have bigger weights,

• dense: error is weighted by the number of point pairs within a lag - more pairs, lesser
weight.

model_name
[str, default=’safe’] The name of the model to check or special command for multiple mod-
els. Available models:

• ‘all’ - the same as list with all models,

• ‘safe’ - [‘linear’, ‘power’, ‘spherical’],

• ‘circular’,

• ‘cubic’,

• ‘exponential’,

• ‘gaussian’,

• ‘linear’,

• ‘power’,

• ‘spherical’.

model_types
[List, default = None] The list with model names to check excluding ‘all’ and ‘safe’ names.

fit_transform(agg_dataset, point_support_dataset, agg_step_size, agg_max_range, agg_nugget=None,
agg_direction=None, agg_tolerance=1, variogram_weighting_method='closest',
model_name='safe', model_types=None, max_iters=25, limit_deviation_ratio=0.1,
minimum_deviation_decrease=0.01, reps_deviation_decrease=3)

Method performs fit() and transform() operations at once.

Parameters
agg_dataset

[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]] Blocks with aggregated
data.

• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid.x, centroid.y, ds,
index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

point_support_dataset
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

• Dict: {block id: [[point x, point y, value]]}

• numpy array: [[block id, x, y, value]]

• DataFrame and GeoDataFrame: columns = {x, y, ds, index}

• PointSupport

agg_step_size
[float] Step size between lags.

agg_max_range
[float] Maximal distance of analysis.

2.5. API 205

Pyinterpolate, Release 0.5.1

agg_nugget
[float, default = None] The nugget of a dataset.

agg_direction
[float (in range [0, 360]), default=0] Direction of semivariogram, values from 0 to 360
degrees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

agg_tolerance
[float (in range [0, 1]), optional, default=1] If agg_tolerance is 0 then points must be
placed at a single line with the beginning in the origin of the coordinate system and the
direction given by y axis and direction parameter. If agg_tolerance is > 0 then the bin
is selected as an elliptical area with major axis pointed in the same direction as the line for
0 tolerance.

• The major axis size == agg_step_size.

• The minor axis size is agg_tolerance * agg_step_size

• The baseline point is at a center of the ellipse.

• agg_tolerance == 1 creates an omnidirectional semivariogram.

variogram_weighting_method
[str, default = “closest”] Method used to weight error at a given lags. Available methods:

• equal: no weighting,

• closest: lags at a close range have bigger weights,

• distant: lags that are further away have bigger weights,

• dense: error is weighted by the number of point pairs within a lag - more pairs, lesser
weight.

model_name
[str, default=’safe’] The name of the model to check or special command for multiple mod-
els. Available models:

• ‘all’ - the same as list with all models,

• ‘safe’ - [‘linear’, ‘power’, ‘spherical’],

• ‘circular’,

• ‘cubic’,

• ‘exponential’,

• ‘gaussian’,

• ‘linear’,

• ‘power’,

• ‘spherical’.

model_types
[List, default = None] The list with model names to check excluding ‘all’ and ‘safe’ names.

206 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

max_iters
[int, default = 25] Maximum number of iterations.

limit_deviation_ratio
[float, default = 0.01] Minimal ratio of model deviation to initial deviation when algorithm
is stopped. Parameter must be set within the limits (0, 1).

minimum_deviation_decrease
[float, default = 0.001] The minimum ratio of the difference between model deviation and
optimal deviation to the optimal deviation: |dev - opt_dev| / opt_dev. The param-
eter must be set within the limits (0, 1).

reps_deviation_decrease
[int, default = 3] How many repetitions of small deviation decrease before termination of
the algorithm.

plot_variograms()

Function shows experimental semivariogram, theoretical semivariogram and regularized semivariogram
after semivariogram regularization with transform() method.

transform(max_iters=25, limit_deviation_ratio=0.1, minimum_deviation_decrease=0.01,
reps_deviation_decrease=3)

Method performs semivariogram regularization after model fitting.

Parameters
max_iters

[int, default = 25] Maximum number of iterations.

limit_deviation_ratio
[float, default = 0.1] Minimal ratio of model deviation to initial deviation when algorithm
is stopped. Parameter must be set within the limits (0, 1).

minimum_deviation_decrease
[float, default = 0.01] The minimum ratio of the difference between model deviation and
optimal deviation to the optimal deviation: |dev - opt_dev| / opt_dev. Parameter
must be set within the limits (0, 1).

reps_deviation_decrease
[int, default = 3] How many repetitions of small deviation decrease before termination of
the algorithm.

Raises
AttributeError
initial_regularized_model is undefined (user didn’t perform fit() method).

ValueError
limit_deviation_ratio or minimum_deviation_decrease parameters <= 0 or
>= 1.

2.5. API 207

Pyinterpolate, Release 0.5.1

Indicator

class IndicatorVariogramData(input_array, number_of_thresholds)
Class describes indicator variogram data.

Parameters
input_array

[numpy array, list, tuple] Coordinates and their values: (pt x, pt y, value)

number_of_thresholds: int
The number of thresholds to model data.

See also:

ExperimentalIndicatorVariogram
Class that calculates experimental variograms for each indicator.

Attributes
input_array

[numpy array, list, tuple] Coordinates and their values: (pt x, pt y, value)

n_thresholds: int
The number of thresholds to model data.

thresholds
[numpy array] The 1D numpy array with thresholds.

ids
[numpy array] The numpy array with [coordinate_x, coordinate_y, threshold_0,
..., threshold_n].

class ExperimentalIndicatorVariogram(input_array, number_of_thresholds, step_size, max_range,
weights=None, direction=None, tolerance=1.0, method='t',
fit=True)

Class describes Experimental Indicator Variogram models.

Parameters
input_array

[numpy array, list, tuple] Coordinates and their values: (pt x, pt y, value)

number_of_thresholds: int
The number of thresholds to model data.

step_size
[float] The distance between lags within each points are included in the calculations.

max_range
[float] The maximum range of analysis.

weights
[numpy array, default=None] Weights assigned to points, index of weight must be the same
as index of point.

direction
[float (in range [0, 360]), default=None] Direction of semivariogram, values from 0 to 360
degrees:

208 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

tolerance
[float (in range [0, 1]), default=1] If tolerance is 0 then points must be placed at a single
line with the beginning in the origin of the coordinate system and the direction given by y
axis and direction parameter. If tolerance is > 0 then the bin is selected as an elliptical
area with major axis pointed in the same direction as the line for 0 tolerance.

• The major axis size == step_size.

• The minor axis size is tolerance * step_size

• The baseline point is at a center of the ellipse.

• The tolerance == 1 creates an omnidirectional semivariogram.

method
[str, default = triangular] The method used for neighbors selection. Available methods:

• “triangle” or “t”, default method where a point neighbors are selected from a triangular
area,

• “ellipse” or “e”, the most accurate method but also the slowest one.

fit
[bool, default = True] Should models be fitted in the class initialization?

References

Goovaerts P. AUTO-IK: a 2D indicator kriging program for automated non-parametric modeling of local uncer-
tainty in earth sciences. DOI: TODO

Attributes
ds

[IndicatorVariogramData] Prepared indicator data.

step_size
[float] Derived from the step_size parameter.

max_range
[float] Derived from the max_range parameter.

weights
[numpy array] Derived from the weights parameter.

direction
[float] Derived from the direction parameter.

tolerance
[float] Derived from the tolerance parameter.

method
[str] Derived from the method parameter.

experimental_models
[List] The [threshold, experimental_variogram] pairs.

2.5. API 209

Pyinterpolate, Release 0.5.1

Methods

fit() Fits indicators to experimental variograms.
show() Show experimental variograms for each indicator.

fit()

Function fits indicators to models and updates class models.

show()

Function shows generated experimental variograms for each indicator.

class IndicatorVariograms(experimental_indicator_variogram)

Class models indicator variograms for all indices.

Parameters
experimental_indicator_variogram

[ExperimentalIndicatorVariogram] Fitted experimanetal variograms with indicators for each
threshold.

Attributes
experimental_indicator_variogram

[ExperimentalIndicatorVariogram] See experimental_indicator_variogram parame-
ter.

theoretical_indicator_variograms
[Dict] Dictionary with fitted theoretical models for each threshold.

Methods

fit() Fits theoretical models to experimental variograms.
show() Shows experimental and theoretical variograms for each threshold.

fit(model_name='linear', nugget=0, rang=None, min_range=0.1, max_range=0.5, number_of_ranges=64,
sill=None, min_sill=0.5, max_sill=1.5, number_of_sills=64, direction=None, error_estimator='rmse',
deviation_weighting='equal', auto_update_attributes=True, warn_about_set_params=True,
verbose=False)
Method tries to find the optimal range, sill and model (function) of the theoretical semivariogram.

Parameters
model_name

[str, default = “linear”] The name of a modeling function. Available models:

• ‘all’,

• ‘safe’ : linear, power and spherical models,

• ‘exponential’,

• ‘gaussian’,

• ‘linear’,

• ‘power’,

210 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• ‘spherical’.

nugget
[float, default = 0] Nugget (bias) of a variogram. Default value is 0.

rang
[float, optional] If given, then range is fixed to this value.

min_range
[float, default = 0.1] The minimal fraction of a variogram range, 0 < min_range <=
max_range.

max_range
[float, default = 0.5] The maximum fraction of a variogram range, min_range <=
max_range <= 1. Parameter max_range greater than 0.5 raises warning.

number_of_ranges
[int, default = 64] How many equally spaced ranges are tested between min_range and
max_range.

sill
[float, default = None] If given, then sill is fixed to this value.

min_sill
[float, default = 0] The minimal fraction of the variogram variance at lag 0 to find a sill, 0
<= min_sill <= max_sill.

max_sill
[float, default = 1] The maximum fraction of the variogram variance at lag 0 to find a sill.
It should be lower or equal to 1. It is possible to set it above 1, but then warning is printed.

number_of_sills
[int, default = 64] How many equally spaced sill values are tested between min_sill and
max_sill.

direction
[float, in range [0, 360], default=None] The direction of a semivariogram. If None given
then semivariogram is isotropic. This parameter is required if passed experimental vari-
ogram is stored in a numpy array.

error_estimator
[str, default = ‘rmse’] A model error estimation method. Available options are:

• ‘rmse’: Root Mean Squared Error,

• ‘mae’: Mean Absolute Error,

• ‘bias’: Forecast Bias,

• ‘smape’: Symmetric Mean Absolute Percentage Error.

deviation_weighting
[str, default = “equal”] The name of a method used to weight error at a given lags. Works
only with RMSE. Available methods:

• equal: no weighting,

• closest: lags at a close range have bigger weights,

• distant: lags that are further away have bigger weights,

• dense: error is weighted by the number of point pairs within a lag.

2.5. API 211

Pyinterpolate, Release 0.5.1

auto_update_attributes
[bool, default = True] Update sill, range, model type and nugget based on the best model.

warn_about_set_params: bool, default=True
Should class invoke warning if model parameters has been set during initialization?

verbose
[bool, default = False] Show iteration results.

Raises
ValueError

Raised when sill < 0 or range < 0 or range > 1.

KeyError
Raised when wrong model name(s) are provided by the users.

KeyError
Raised when wrong error type is provided by the users.

Warns
SillOutsideSafeRangeWarning

Warning printed when max_sill > 1.

RangeOutsideSafeDistanceWarning
Warning printed when max_range > 0.5.

Warning
Model parameters were given during initilization but program is forced to fit the new set
of parameters.

Warning
Passed experimental_variogram is a numpy array and direction parameter is None.

show(subplots=False)
Method plots experimental and theoretical variograms.

Parameters
subplots

[bool, default = False] If True then each indicator variogram is plotted on a separate plot.
Otherwise, all variograms are plotted on a scatter single plot.

2.5.6 Kriging

Point Kriging

kriging(observations, theoretical_model, points, how='ok', neighbors_range=None, no_neighbors=4,
use_all_neighbors_in_range=False, sk_mean=None, allow_approx_solutions=False,
number_of_workers=1, show_progress_bar=True)

Function manages Ordinary Kriging and Simple Kriging predictions.

Parameters
observations

[numpy array] Known points and their values.

theoretical_model
[TheoreticalVariogram] Fitted variogram model.

212 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

points
[numpy array] Coordinates with missing values (to estimate results).

how
[str, default=’ok’]

Select what kind of kriging you want to perform:
• ‘ok’: ordinary kriging,

• ‘sk’: simple kriging - if it is set then sk_mean parameter must be provided.

neighbors_range
[float, default=None] The maximum distance where we search for neighbors. If None is
given then range is selected from the theoretical_model rang attribute.

no_neighbors
[int, default = 4] The number of the n-closest neighbors used for interpolation.

use_all_neighbors_in_range
[bool, default = False] True: if the real number of neighbors within the neighbors_range
is greater than the number_of_neighbors parameter then take all of them anyway.

sk_mean
[float, default=None] The mean value of a process over a study area. Should be know before
processing. That’s why Simple Kriging has a limited number of applications. You must have
multiple samples and well-known area to know this parameter.

allow_approx_solutions
[bool, default=False] Allows the approximation of kriging weights based on the OLS algo-
rithm. We don’t recommend set it to True if you don’t know what are you doing. This
parameter can be useful when you have clusters in your dataset, that can lead to singular or
near-singular matrix creation.

number_of_workers
[int, default=1] How many processing units can be used for predictions. Increase it only for
a very large number of interpolated points (~10k+).

show_progress_bar
[bool, default=True] Show progress bar of predictions.

Returns
: numpy array

Predictions [predicted value, variance error, longitude (x), latitude
(y)]

ordinary_kriging(theoretical_model, known_locations, unknown_location, neighbors_range=None,
no_neighbors=4, use_all_neighbors_in_range=False, allow_approximate_solutions=False)

Function predicts value at unknown location with Ordinary Kriging technique.

Parameters
theoretical_model

[TheoreticalVariogram] A trained theoretical variogram model.

known_locations
[numpy array] The known locations.

2.5. API 213

Pyinterpolate, Release 0.5.1

unknown_location
[Union[List, Tuple, numpy array]] Point where you want to estimate value (x, y) <->
(lon, lat).

neighbors_range
[float, default=None] The maximum distance where we search for neighbors. If None is
given then range is selected from the theoretical_model rang attribute.

no_neighbors
[int, default = 4] The number of the n-closest neighbors used for interpolation.

use_all_neighbors_in_range
[bool, default = False] True: if the real number of neighbors within the neighbors_range
is greater than the number_of_neighbors parameter then take all of them anyway.

allow_approximate_solutions
[bool, default=False] Allows the approximation of kriging weights based on the OLS algo-
rithm. We don’t recommend set it to True if you don’t know what are you doing. This
parameter can be useful when you have clusters in your dataset, that can lead to singular or
near-singular matrix creation.

Returns
: numpy array

[predicted value, variance error, longitude (x), latitude (y)]

Raises
RunetimeError

Singularity matrix in a Kriging system.

simple_kriging(theoretical_model, known_locations, unknown_location, process_mean, neighbors_range=None,
no_neighbors=1, use_all_neighbors_in_range=False, allow_approximate_solutions=False)

Function predicts value at unknown location with Ordinary Kriging technique.

Parameters
theoretical_model

[TheoreticalVariogram] A trained theoretical variogram model.

known_locations
[numpy array] The known locations.

unknown_location
[Union[List, Tuple, numpy array]] Point where you want to estimate value (x, y) <->
(lon, lat).

process_mean
[float] The mean value of a process over a study area. Should be know before processing.
That’s why Simple Kriging has a limited number of applications. You must have multiple
samples and well-known area to know this parameter.

neighbors_range
[float, default=None] The maximum distance where we search for neighbors. If None is
given then range is selected from the theoretical_model rang attribute.

no_neighbors
[int, default = 4] The number of the n-closest neighbors used for interpolation.

214 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

use_all_neighbors_in_range
[bool, default = False] True: if the real number of neighbors within the neighbors_range
is greater than the number_of_neighbors parameter then take all of them anyway.

allow_approximate_solutions
[bool, default=False] Allows the approximation of kriging weights based on the OLS algo-
rithm. We don’t recommend set it to True if you don’t know what are you doing. This
parameter can be useful when you have clusters in your dataset, that can lead to singular or
near-singular matrix creation.

Returns
: numpy array

[predicted value, variance error, longitude (x), latitude (y)]

Raises
RunetimeError

Singularity matrix in a Kriging system.

Block - Poisson Kriging

centroid_poisson_kriging(semivariogram_model, blocks, point_support, unknown_block,
unknown_block_point_support, number_of_neighbors,
is_weighted_by_point_support=True, raise_when_negative_prediction=True,
raise_when_negative_error=True, allow_approximate_solutions=False)

Function performs centroid-based Poisson Kriging of blocks (areal) data.

Parameters
semivariogram_model

[TheoreticalVariogram] A fitted variogram.

blocks
[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]]

Blocks with aggregated data.
• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid_x, centroid_y,
ds, index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

The point support of polygons.
• Dict: {block id: [[point x, point y, value]]},

• numpy array: [[block id, x, y, value]],

• DataFrame and GeoDataFrame: columns={x_col, y_col, ds, index},

• PointSupport.

unknown_block
[numpy array] [index, centroid x, centroid y]

unknown_block_point_support
[numpy array] Points within block [[x, y, point support value]]

2.5. API 215

Pyinterpolate, Release 0.5.1

number_of_neighbors
[int] The minimum number of neighbours that can potentially affect block.

is_weighted_by_point_support
[bool, default = True] Are distances between blocks weighted by the point support?

raise_when_negative_prediction
[bool, default=True] Raise error when prediction is negative.

raise_when_negative_error
[bool, default=True] Raise error when prediction error is negative.

allow_approximate_solutions
[bool, default=False] Allows the approximation of kriging weights based on the OLS algo-
rithm. We don’t recommend set it to True if you don’t know what are you doing. This
parameter can be useful when you have clusters in your dataset, that can lead to singular or
near-singular matrix creation.

Returns
results

[List] [unknown block index, prediction, error]

Raises
ValueError

Prediction or prediction error are negative.

Warns
ExperimentalFeatureWarning

Directional Kriging is in early-phase and may contain bugs.

area_to_area_pk(semivariogram_model, blocks, point_support, unknown_block, unknown_block_point_support,
number_of_neighbors, raise_when_negative_prediction=True,
raise_when_negative_error=True, log_process=True)

Function predicts areal value in an unknown location based on the area-to-area Poisson Kriging

Parameters
semivariogram_model

[TheoreticalVariogram] A fitted variogram.

blocks
[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]]

Blocks with aggregated data.
• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid_x, centroid_y,
ds, index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

The point support of polygons.
• Dict: {block id: [[point x, point y, value]]},

• numpy array: [[block id, x, y, value]],

216 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

• DataFrame and GeoDataFrame: columns={x_col, y_col, ds, index},

• PointSupport.

unknown_block
[numpy array] [index, centroid x, centroid y]

unknown_block_point_support
[numpy array] Points within block [[x, y, point support value]]

number_of_neighbors
[int] The minimum number of neighbours that can potentially affect block.

raise_when_negative_prediction
[bool, default=True] Raise error when prediction is negative.

raise_when_negative_error
[bool, default=True] Raise error when prediction error is negative.

log_process
[bool, default=True] Log process info and debug info.

Returns
results

[List] [unknown block index, prediction, error]

Raises
ValueError

Prediction or prediction error are negative.

Warns
ExperimentalFeatureWarning

Directional Kriging is in early-phase and may contain bugs.

area_to_point_pk(semivariogram_model, blocks, point_support, unknown_block, unknown_block_point_support,
number_of_neighbors, max_range=None, raise_when_negative_prediction=True,
raise_when_negative_error=True, err_to_nan=True)

Function predicts areal value in the unknown location based on the area-to-area Poisson Kriging

Parameters
semivariogram_model

[TheoreticalVariogram] A fitted variogram.

blocks
[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]]

Blocks with aggregated data.
• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid_x, centroid_y,
ds, index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

The point support of polygons.

2.5. API 217

Pyinterpolate, Release 0.5.1

• Dict: {block id: [[point x, point y, value]]},

• numpy array: [[block id, x, y, value]],

• DataFrame and GeoDataFrame: columns={x_col, y_col, ds, index},

• PointSupport.

unknown_block
[numpy array] [index, centroid x, centroid y]

unknown_block_point_support
[numpy array] Points within block [[x, y, point support value]]

number_of_neighbors
[int] The minimum number of neighbours that can potentially affect block.

max_range
[float , default=None] The maximum distance to search for a neighbors, if None given then
algorithm uses the theoretical variogram’s range.

raise_when_negative_prediction
[bool, default=True] Raise error when prediction is negative.

raise_when_negative_error
[bool, default=True] Raise error when prediction error is negative.

err_to_nan
[bool, default=True] ValueError to NaN.

Returns
results

[List] [(unknown point coordinates), prediction, error]

Raises
ValueError

Prediction or prediction error are negative.

Warns
ExperimentalFeatureWarning

Directional Kriging is in early-phase and may contain bugs.

Indicator Kriging

class IndicatorKriging(datapoints, indicator_variograms, unknown_locations, kriging_type='ok',
process_mean=None, neighbors_range=None, no_neighbors=4,
use_all_neighbors_in_range=False, allow_approximate_solutions=False,
get_expected_values=True)

Class performs indicator kriging.

Parameters
datapoints

[numpy ndarray] The known locations [x, y, value].

indicator_variograms
[IndicatorVariograms] Modeled variograms for each threshold.

unknown_locations
[numpy ndarray] Points where we want to estimate value (x, y) <-or-> (lon, lat).

218 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

kriging_type
[str, default = ‘ok’] Type of kriging to perform. Possible values: ‘ok’ - ordinary kriging, ‘sk’
- simple kriging.

process_mean
[float] The mean value of a process over a study area. Should be know before processing.
That’s why Simple Kriging has a limited number of applications. You must have multiple
samples and well-known area to know this parameter.

neighbors_range
[float, default=None] The maximum distance where we search for neighbors. If None is
given then range is selected from the theoretical_model rang attribute.

no_neighbors
[int, default = 4] The number of the n-closest neighbors used for interpolation.

use_all_neighbors_in_range
[bool, default = False] True: if the real number of neighbors within the neighbors_range
is greater than the number_of_neighbors parameter then take all of them anyway.

allow_approximate_solutions
[bool, default=False] Allows the approximation of kriging weights based on the OLS algo-
rithm. We don’t recommend set it to True if you don’t know what are you doing. This
parameter can be useful when you have clusters in your dataset, that can lead to singular or
near-singular matrix creation.

get_expected_values
[bool, default=True] If True then expected values and variances are calculated.

Attributes
thresholds

[numpy ndarray] Thresholds used for indicator kriging.

coordinates
[numpy ndarray] Coordinates of unknown locations.

indicator_predictions
[numpy ndarray] Indicator kriging predictions for each threshold and each unknown location.

expected_values
[numpy ndarray] Expected values derived from indicator_predictions for each un-
known location.

variances
[numpy ndarray] Variances derived from indicator_predictions for each unknown lo-
cation.

Methods

get_indicator_maps()Returns dictionary with thresholds and indicator maps for each of them.
get_expected_values()Returns two arrays: one array with coordinates and expected values, and the second with

coordinates and variances.

get_expected_values_maps()

Method returns expected values and variances for each threshold.

Returns

2.5. API 219

Pyinterpolate, Release 0.5.1

expected_values, variances
[numpy ndarray, numpy ndarray] Expected values and variances.

get_indicator_maps()

Method returns indicator map for each threshold.

Returns
indicator_maps

[Dict] Indicator map for each threshold.

2.5.7 Inverse Distance Weighting

inverse_distance_weighting(known_points, unknown_location, number_of_neighbours=-1, power=2.0)
Inverse Distance Weighting with a given set of points and an unknown location.

Parameters
known_points

[numpy array] The MxN array, where M is a number of rows (points) and N is the number
of columns, where the last column represents a value of a known point. (It could be (N-1)-
dimensional data).

unknown_location
[Iterable] Array or list with coordinates of the unknown point. It’s length is N-1 (number
of dimensions). The unknown location shape should be the same as the known_points
parameter shape, if not, then new dimension is added once - vector of points [x, y] becomes
[[x, y]] for 2-dimensional data.

number_of_neighbours
[int, default = -1] If default value (-1) then all known points will be used to estimate value at
the unknown location. Can be any number within the limits [2, len(known_points)],

power
[float, default = 2.] Power value must be larger or equal to 0. It controls weight assigned
to each known point. Larger power means stronger influence of the closest neighbors, but it
decreases quickly.

Returns
result

[float] The estimated value.

Raises
ValueError

Power parameter set to be smaller than 0.

ValueError
Less than 2 neighbours or more than the number of known_points neighbours are given in
the number_of_neighbours parameter.

220 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

2.5.8 Pipelines

Data download

Available datasets are stored in the pyinterpolate-datasets package: https://pypi.org/project/pyinterpolate-datasets/
2023.0.0/

Kriging-based processes

BlockFilter

alias of BlockPK

class BlockPK(semivariogram_model, blocks, point_support, kriging_type='ata')
Class is an object that can be used for Area-to-Area, Area-to-Point, Centroid-based Poisson Kriging regulariza-
tion.

Parameters
semivariogram_model

[TheoreticalVariogram] The fitted variogram model.

blocks
[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]]

Blocks with aggregated data.
• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid.x, centroid.y,
ds, index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

The point support of polygons.
• Dict: {block id: [[point x, point y, value]]},

• numpy array: [[block id, x, y, value]],

• DataFrame and GeoDataFrame: columns={x, y, ds, index},

• PointSupport.

kriging_type
[str, default=’ata’]

A type of Poisson Kriging operation. Available methods:
• 'ata': Area-to-Area Poisson Kriging.

• 'atp': Area-to-Point Poisson Kriging.

• 'cb': Centroid-based Poisson Kriging.

Attributes
semivariogram_model

[TheoreticalVariogram] See the semivariogram_model parameter.

2.5. API 221

https://pypi.org/project/pyinterpolate-datasets/2023.0.0/
https://pypi.org/project/pyinterpolate-datasets/2023.0.0/

Pyinterpolate, Release 0.5.1

blocks
[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]] See the blocks parameter.

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]] See the
point_support parameter.

kriging_type
[str, default=’ata’] See the kriging_type parameter.

geo_ds
[geopandas GeoDataFrame] A regularized set of blocks: ['id', 'geometry', 'reg.
est', 'reg.err', 'rmse']

statistics
[Dict]

A dictionary with two keys:
• 'RMSE': root mean squared error of regularization,

• 'time': time (in seconds) of the regularization process.

raise_when_negative_prediction
[bool, default=True] Raise error when prediction is negative.

raise_when_negative_error
[bool, default=True] Raise error when prediction error is negative.

Methods

regular-
ize()

Regularize blocks (you should use it for a data deconvolution - with ATP PK, or for a data filtering
- with ATA, C-B PK).

regularize(number_of_neighbors, data_crs=None, raise_when_negative_prediction=True,
raise_when_negative_error=True)

Function regularizes whole dataset and creates new values and error maps based on the kriging type. Func-
tion does not predict unknown and missing values, areas with NaN values are skipped.

Parameters
number_of_neighbors

[int] The minimum number of neighbours that potentially affect block.

data_crs
[str, default=None] Data crs, look into: https://geopandas.org/projections.html. If None
given then returned GeoDataFrame doesn’t have a crs.

raise_when_negative_prediction
[bool, default=True] Raise error when prediction is negative.

raise_when_negative_error
[bool, default=True] Raise error when prediction error is negative.

Returns
regularized

[gpd.GeoDataFrame] Regularized set of blocks: ['id', 'geometry', 'reg.est',
'reg.err', 'rmse']

222 Chapter 2. Contents

https://geopandas.org/projections.html

Pyinterpolate, Release 0.5.1

class BlockToBlockKrigingComparison(variogram, blocks, point_support, no_of_neighbors=16,
neighbors_range=None, simple_kriging_mean=None,
raise_when_negative_prediction=True,
raise_when_negative_error=True, training_set_frac=0.8,
allow_approx_solutions=False, iters=20)

Class compares different block kriging models and techniques.

Parameters
blocks

[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]]

Blocks with aggregated data.
• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid.x, centroid.y,
ds, index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

The point support of polygons.
• Dict: {block id: [[point x, point y, value]]},

• numpy array: [[block id, x, y, value]],

• DataFrame and GeoDataFrame: columns={x, y, ds, index},

• PointSupport.

no_of_neighbors
[int, default = 16] The maximum number of n-closest neighbors used for interpolation.

neighbors_range
[float, default = None] Maximum distance where we search for point neighbors. If None
given then range is selected from the theoretical_model rang attribute. If algorithms
picks less neighbors than no_of_neighbors within the range then additional points are
selected outside the neighbors_range.

simple_kriging_mean
[float, default = None] The mean value of a process over a study area. Should be known
before processing. If not provided then Simple Kriging estimator is skipped.

raise_when_negative_prediction
[bool, default = True] Raise error when prediction is negative.

raise_when_negative_error
[bool, default=True] Raise error when prediction error is negative.

training_set_frac
[float, default = 0.8] How many values sampled as a known points set in each iteration. Could
be any fraction within (0:1) range.

allow_approx_solutions
[bool, default = False] Allows the approximation of kriging weights based on the OLS algo-
rithm. Not recommended to set to True if you don’t know what you are doing!

2.5. API 223

Pyinterpolate, Release 0.5.1

iters
[int, default = 20] How many tests to perform over random samples of a data.

Attributes
variogram

[TheoreticalVariogram] See variogram parameter.

blocks
[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]] See blocks parameter.

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]] See
point_support parameter.

no_of_neighbors
[int] See no_of_neighbors parameter.

neighbors_range
[float] See neighbors_range parameter.

simple_kriging_mean
[float] See simple_kriging_mean parameter.

raise_when_negative_prediction
[bool, default = True] See raise_when_negative_prediction parameter.

raise_when_negative_error
[bool, default=True] See raise_when_negative_error parameter.

training_set_frac
[float] See training_set_frac parameter.

iters
[int] See iters parameter.

common_indexes
[Set] Indexes that are common for blocks and point support.

training_set_indexes
[List[List]] List of lists with indexes used in a random sampling for a training set.

results
[Dict] Results for each type of Block Kriging method.

Methods

run_tests() Compares different types of Kriging, returns Dict with the mean root mean squared error of each
iteration.

run_tests()

Method compares ordinary, simple, area-to-area and centroid-based block Poisson Kriging.

smooth_blocks(semivariogram_model, blocks, point_support, number_of_neighbors, max_range=None,
crs=None, raise_when_negative_prediction=True, raise_when_negative_error=True,
err_to_nan=True)

Function smooths blocks data into their point support values.

224 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Parameters
semivariogram_model

[TheoreticalVariogram] The regularized variogram.

blocks
[Union[Blocks, gpd.GeoDataFrame, pd.DataFrame, np.ndarray]]

Blocks with aggregated data.
• Blocks: Blocks() class object.

• GeoDataFrame and DataFrame must have columns: centroid.x, centroid.y,
ds, index. Geometry column with polygons is not used.

• numpy array: [[block index, centroid x, centroid y, value]].

point_support
[Union[Dict, np.ndarray, gpd.GeoDataFrame, pd.DataFrame, PointSupport]]

The point support of polygons.
• Dict: {block id: [[point x, point y, value]]},

• numpy array: [[block id, x, y, value]],

• DataFrame and GeoDataFrame: columns={x, y, ds, index},

• PointSupport.

number_of_neighbors
[int] The minimum number of neighbours that potentially affect block.

max_range
[float, default=None] The maximum distance to search for neighbors.

crs
[Any, default=None] CRS of data.

raise_when_negative_prediction
[bool, default=True] Raise error when prediction is negative.

raise_when_negative_error
[bool, default=True] Raise error when prediction error is negative.

err_to_nan
[bool, default=True] ValueError to NaN.

Returns
results

[gpd.GeoDataFrame] Columns = [area_id, geometry (Point), prediction,
error].

2.5. API 225

Pyinterpolate, Release 0.5.1

2.5.9 Visualization

interpolate_raster(data, dim=1000, number_of_neighbors=4, semivariogram_model=None, direction=None,
tolerance=None, allow_approx_solutions=True)

Function interpolates raster from data points using ordinary kriging.

Parameters
data

[numpy array] [coordinate x, coordinate y, value].

dim
[int] Number of pixels (points) of a larger dimension (it could be width or height). Ratio is
preserved.

number_of_neighbors
[int, default=16] Number of points used to interpolate data.

semivariogram_model
[TheoreticalVariogram, default=None] Variogram model, if not provided then it is estimated
from a given dataset.

direction
[float (in range [0, 360]), optional] Direction of semivariogram, values from 0 to 360 degrees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

tolerance
[float (in range [0, 1]), optional] If tolerance is 0 then points must be placed at a single line
with the beginning in the origin of the coordinate system and the direction given by y-axis
and direction parameter. If tolerance is > 0 then the bin is selected as an elliptical area
with major axis pointed in the same direction as the line for 0 tolerance:

• the major axis size == step_size,

• the minor axis size is tolerance * step_size,

• the baseline point is at a center of the ellipse,

• the tolerance == 1 creates an omnidirectional semivariogram.

allow_approx_solutions
[bool, default=True] Allows the approximation of kriging weights based on the OLS algo-
rithm. We don’t recommend set it to True if you don’t know what are you doing. This
parameter can be useful when you have clusters in your dataset, that can lead to singular or
near-singular matrix creation.

Returns
raster_dict

[Dict] A dictionary with keys:

• ‘result’: numpy array of interpolated values,

• ‘error’: numpy array of interpolation errors,

• ‘params’:

226 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

– ‘pixel size’,

– ‘min x’,

– ‘max x’,

– ‘min y’,

– ‘max y’

to_tiff(data, dir_path, fname='', dim=1000, number_of_neighbors=4, semivariogram_model=None,
direction=None, tolerance=None, allow_approx_solutions=True)

Function interpolates raster from data points using ordinary kriging and stores output results in tiff and tfw files.

Parameters
data

[numpy array] [coordinate x, coordinate y, value].

dir_path
[str] Path to directory where output files will be stored.

fname
[str, default=”] Suffix of the output *results.tiff and *error.tiff files.

dim
[int] Number of pixels (points) of a larger dimension (it could be width or height). Ratio
is preserved.

number_of_neighbors
[int, default=16] Number of points used to interpolate data.

semivariogram_model
[TheoreticalVariogram, default=None] Variogram model, if not provided then it is esti-
mated from a given dataset.

direction
[float (in range [0, 360]), optional] Direction of semivariogram, values from 0 to 360
degrees:

• 0 or 180: is E-W,

• 90 or 270 is N-S,

• 45 or 225 is NE-SW,

• 135 or 315 is NW-SE.

tolerance
[float (in range [0, 1]), optional] If tolerance is 0 then points must be placed at a single
line with the beginning in the origin of the coordinate system and the direction given by y-
axis and direction parameter. If tolerance is > 0 then the bin is selected as an elliptical
area with major axis pointed in the same direction as the line for 0 tolerance:

• the major axis size == step_size,

• the minor axis size is tolerance * step_size,

• the baseline point is at a center of the ellipse,

• the tolerance == 1 creates an omnidirectional semivariogram.

allow_approx_solutions
[bool, default=True] Allows the approximation of kriging weights based on the OLS al-
gorithm. We don’t recommend set it to True if you don’t know what are you doing. This

2.5. API 227

Pyinterpolate, Release 0.5.1

parameter can be useful when you have clusters in your dataset, that can lead to singular
or near-singular matrix creation.

Returns
files: Tuple[str, str]

Tuple of two strings: path to tiff file with interpolated data and path to tiff file with inter-
polation errors.

2.5.10 Validation

Cross-validation

validate_kriging(points, theoretical_model, how='ok', neighbors_range=None, no_neighbors=4,
use_all_neighbors_in_range=False, sk_mean=None, allow_approx_solutions=False)

Function performs cross-validation of kriging models.

Parameters
points

[numpy array] Known points and their values.

theoretical_model
[TheoreticalVariogram] Fitted variogram model.

how
[str, default=’ok’]

Select what kind of kriging you want to perform:
• ‘ok’: ordinary kriging,

• ‘sk’: simple kriging - if it is set then sk_mean parameter must be provided.

neighbors_range
[float, default=None] The maximum distance where we search for neighbors. If None is
given then range is selected from the theoretical_model rang attribute.

no_neighbors
[int, default = 4] The number of the n-closest neighbors used for interpolation.

use_all_neighbors_in_range
[bool, default = False] True: if the real number of neighbors within the
neighbors_range is greater than the number_of_neighbors parameter then take all
of them anyway.

sk_mean
[float, default=None] The mean value of a process over a study area. Should be know
before processing. That’s why Simple Kriging has a limited number of applications. You
must have multiple samples and well-known area to know this parameter.

allow_approx_solutions
[bool, default=False] Allows the approximation of kriging weights based on the OLS al-
gorithm. We don’t recommend set it to True if you don’t know what are you doing. This
parameter can be useful when you have clusters in your dataset, that can lead to singular
or near-singular matrix creation.

Returns
: Tuple

228 Chapter 2. Contents

Pyinterpolate, Release 0.5.1

Function returns tuple with:
• Mean Prediction Error,

• Mean Kriging Error: ratio of variance of prediction errors to the average variance
error of kriging,

• array with: [coordinate x, coordinate y, prediction error,
kriging estimate error]

References

1. Clark, I., (2004) “The Art of Cross Validation in Geostatistical Applications”

2. Clark I., (1979) “Does Geostatistics Work”, Proc. 16th APCOM, pp.213.-225.

2.6 Development

2.6.1 Package structure

High level overview:

• [x] pyinterpolate
– [x] distance - distance calculation,

– [x] idw - inverse distance weighting interpolation,

– [x] io - reads and prepares input spatial datasets,

– [x] kriging - Ordinary Kriging, Simple Kriging, Poisson Kriging: centroid based, area-to-area,
area-to-point,

– [x] pipelines - a complex functions to smooth a block data, download sample data, compare dif-
ferent kriging techniques, and filter blocks,

– [x] processing - core data structures of the package: Blocks and PointSupport, and additional
functions used for internal processes,

– [x] variogram - experimental variogram, theoretical variogram, variogram point cloud, semivari-
ogram regularization & deconvolution,

– [x] viz - interpolation of smooth surfaces from points into rasters.

• [x] tutorials - tutorials (Basic, Intermediate and Advanced).

2.6.2 Requirements and dependencies (v 0.3.0)

Core requirements and dependencies are:

• Python >= 3.7

• descartes

• geopandas

• matplotlib

• numpy

2.6. Development 229

Pyinterpolate, Release 0.5.1

• tqdm

• pyproj

• scipy

• shapely

• fiona

• rtree

• prettytable

• pandas

• dask

• requests

You may check a specific version of requirements in the setup.cfg file.

2.6.3 Tests and contribution

All tests are grouped in the test directory. If you would like to contribute, then you won’t avoid testing, but it is
described step-by-step here: CONTRIBUTION.md

2.6.4 Development

• API documentation,

• Dedicated webpage,

• Check Issues and TODOs :)

2.6.5 Known Bugs

• Huge datasets (more than 10k points) lead to a memory error

2.7 Community

2.7.1 Contributors

Author(s)

1. Szymon Moliński, @SimonMolinsky

230 Chapter 2. Contents

https://github.com/DataverseLabs/pyinterpolate/blob/main/CONTRIBUTION.md

Pyinterpolate, Release 0.5.1

Maintainer(s)

1. Szymon Moliński, @SimonMolinsky

Contributors

1. Lakshaya Inani, @Lakshayainani
2. Sean Lim, @seanjunheng2

3. Scott Gallacher, @scottgallacher-3

4. Ethem Turgut, @ethmtrgt
5. Tobiasz Wojnar, @TobiaszWojnar

Reviewers (JOSS)

1. @sdesabbata (reviewer)

2. @kenohori (reviewer)

3. @hugoledoux (editor)

2.7.2 Network

Join our community in Discord: Discord Server Pyinterpolate

2.7.3 Use Cases

• Tick-Borne Disease Detector (Data Lions company) for the European Space Agency (2019-2020).

• B2C project related to the prediction of demand for specific flu medications (2020).

• B2G project related to the large-scale infrastructure maintenance (2020-2021).

• E-commerce service for reporting and analysis, building spatial / temporal profiles of customers (2022+).

• The external data augmentation for e-commerce services (2022+).

2.8 Learning Materials

2.8.1 Publications

• - (2022) URL (JOSS) Pyinterpolate: Spatial interpolation in Python for point measurements and aggregated
datasets

2.8. Learning Materials 231

https://discord.gg/3EMuRkj
https://joss.theoj.org/papers/10.21105/joss.02869

Pyinterpolate, Release 0.5.1

2.8.2 Blog posts

• - (2022) URL (Ordinary Kriging) Interpolate Air Quality Measurements with Python,

• - (2022) URL (Area-to-Point Poisson Kriging) Get More from Crime Rate Data and Other Socio-Economic
Indicators with Pyinterpolate,

• - (2022) URL (Theoretical Variograms) Geostatistics: Theoretical Variogram Models

• - (2022) URL (Kriging - General) Interpolate Air Pollution with Pyinterpolate

2.8.3 Presentations & Workshops

• - (2022) URL (Poisson Kriging) Wzbogacanie agregowanych danych publicznych z Pythonem i Geostatystyką

2.9 Bibliography

Pyinterpolate was created thanks to many resources and some of them are pointed here:

• Armstrong M., Basic Linear Geostatistics, Springer 1998,

• GIS Algorithms by Ningchuan Xiao: https://uk.sagepub.com/en-gb/eur/gis-algorithms/book241284

• Pardo-Iguzquiza E., VARFIT: a fortran-77 program for fitting variogram models by weighted least squares, Com-
puters & Geosciences 25, 251-261, 1999,

• Goovaerts P., Kriging and Semivariogram Deconvolution in the Presence of Irregular Geographical Units, Math-
ematical Geology 40(1), 101-128, 2008

• Deutsch C.V., Correcting for Negative Weights in Ordinary Kriging, Computers & Geosciences Vol.22, No.7,
pp. 765-773, 1996

232 Chapter 2. Contents

https://ml-gis-service.com/index.php/2021/10/31/data-science-interpolate-air-quality-measurements-with-python/
https://ml-gis-service.com/index.php/2022/12/09/get-more-from-crime-rate-data-and-other-socio-economic-indicators-with-pyinterpolate/
https://ml-gis-service.com/index.php/2022/04/01/geostatistics-theoretical-variogram-models/
https://www.linkedin.com/pulse/interpolate-air-pollution-pyinterpolate-szymon-moli�ski/
https://www.youtube.com/watch?v=sSx-OxMzxN0
https://uk.sagepub.com/en-gb/eur/gis-algorithms/book241284

CHAPTER

THREE

HOW TO CITE

Moliński, S., (2022). Pyinterpolate: Spatial interpolation in Python for point measurements and aggregated datasets.
Journal of Open Source Software, 7(70), 2869, https://doi.org/10.21105/joss.02869

233

https://doi.org/10.21105/joss.02869

	version 0.5.1 - Mykolaiv
	Contents
	Setup
	Installation guidelines
	Conda
	pip

	Installation - additional topics
	Working with Notebooks
	The libspatialindex_c.so dependency error

	Quickstart
	Installation
	Ordinary Kriging

	Tutorials
	Beginner
	A.1.1 Semivariogram Estimation
	Table of Contents:
	Introduction
	Import packages and modules
	1) Read point data
	2) Create the experimental variogram
	3. Set manually different semivariogram models
	Models

	4) Set automatically semivariogram model
	5) Export model
	6) Import model
	Changelog

	A.1.2 Semivariogram models
	Table of Contents:
	Introduction
	Import packages
	1) Create a random surface
	2) Create the experimental semivariogram
	3) Set all variogram models
	4) Compare semivariogram models
	Changelog

	A.1.3 Spatial Dependence Index
	Table of Contents:
	Introduction
	1. What is the spatial dependency index?
	2. Why do we use the spatial dependency index?
	Example: Spatial Dependence over the same study extent but for different elements
	API
	Changelog

	A.2.1 Directional semivariograms
	Table of Contents:
	Introduction
	A directional process

	1) Read and show point data
	2) Create the experimental semivariogram
	Case 1: W-E Direction
	Case 2: N-S Direction
	Case 3: NW-SE Direction
	Case 4: NE-SW Direction
	Case 5: Isotropic Variogram

	3) Compare semivariograms
	4) Bonus: Compare calculation times and results
	Where to go from here?
	Changelog

	A.2.2 Variogram Points Cloud
	Table of Contents
	Introduction
	Import packages
	1) Read point data
	2) Set proper lag size with variogram cloud histogram
	3) Detect and remove outliers
	4) Calculate experimental semivariogram from point cloud
	Where to go from here?
	Changelog

	Experimental Variogram and Variogram Cloud classes
	Table of Contents:
	Introduction
	Import packages & read data
	1. Experimental Variogram class
	Optional parameter: weights
	Optional parameters: direction, tolerance, method

	Summary
	Where to go from here?
	Changelog

	Intermediate
	B.1.1 Ordinary and Simple Kriging
	Table of Contents:
	Introduction
	Import packages
	1) Read point data
	2) Set Semivariogram model
	3) Set Ordinary Kriging and Simple Kriging models
	4) Predict values at unknown locations
	Where to go from here?
	Changelog

	B.1.2 Kriging Benchmarking
	Table of Contents:
	Introduction
	Import packages
	1) Read point data
	2) Divide the dataset into two sets: modeling and validation set
	3) Perform IDW and evaluate it
	4) Perform variogram modeling on the modeling set
	5) Validate Kriging and compare Kriging and IDW validation results
	6) Bonus scenario: only 2% of values are known!
	Where to go from here?
	Changelog

	B.1.3 Outliers and Kriging
	Table of Contents:
	Introduction
	Import packages
	1) Read point data and divide it into the training and test set
	2) Check outliers: analyze the distribution of the values
	3) Create the Variogram Point Cloud model for datasets A and B
	4) Remove outliers from the variograms
	5) Create Four Ordinary Kriging models based on the four Variogram Point Clouds and compare their performance
	Where to go from here?
	Changelog

	B.2.1 Directional Ordinary Kriging
	Table of Contents:
	Introduction
	1. Read meuse dataset and transform data
	2. Create directional variograms
	3. Create directional Ordinary Kriging models
	4. Compare interpolated results
	Where to go from here?
	Changelog

	Advanced
	C.1.1 Blocks to points Ordinary Kriging
	Table of Contents:
	Introduction
	Import packages
	1) Read areal data
	2) Detect and remove outliers
	3. Create a theoretical semivariogram model
	4. Read point data canvas
	5. Build a map of interpolated values
	6. Show a map of interpolated values with a choropleth map of the breast cancer rates
	Changelog

	C.1.2 Semivariogram Regularization
	Table of Contents:
	Introduction
	Import packages
	1) Prepare areal and point data
	2) Set semivariogram parameters
	3) Regularize semivariogram
	4) Visualize and check semivariogram
	5) Export semivariogram to text file
	Where to go from here?
	Changelog

	C.1.3 Poisson Kriging - centroid based approach
	Table of Contents:
	Introduction
	1) Read and explore data
	2) Load semivariogram model
	3) Prepare training and test data.
	4) Predict values at unknown locations and calculate forecast bias and root mean squared error.
	5) Analyze Forecast Bias and Root Mean Squared Error of prediction
	Where to go from here?
	Changelog

	Poisson Kriging - Area to Area Kriging
	Table of Contents:
	Introduction
	1) Read and explore data
	2) Load a semivariogram model
	3) Prepare training and test data.
	4) Predict values at unknown locations and calculate forecast bias and root mean squared error.
	5) Analyze Forecast Bias and Root Mean Squared Error of prediction
	Where to go from here?
	Changelog

	Poisson Kriging - Area to Point Kriging
	Table of Contents:
	Introduction
	1) Read and explore data
	2) Load semivariogram model
	3) Perform Area to Point smoothing of areal data.
	4) Visualize data
	Changelog

	How to cite
	API
	Core data structures
	Input / Output
	Distance calculations
	deprecated

	Gridding
	Variogram
	Experimental
	Theoretical
	Block
	Deconvolution
	Indicator

	Kriging
	Point Kriging
	Block - Poisson Kriging
	Indicator Kriging

	Inverse Distance Weighting
	Pipelines
	Data download
	Kriging-based processes

	Visualization
	Validation
	Cross-validation

	Development
	Package structure
	Requirements and dependencies (v 0.3.0)
	Tests and contribution
	Development
	Known Bugs

	Community
	Contributors
	Author(s)
	Maintainer(s)
	Contributors
	Reviewers (JOSS)

	Network
	Use Cases

	Learning Materials
	Publications
	Blog posts
	Presentations & Workshops

	Bibliography

	How to cite

